A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-ca...The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633nm output frequency to a super-cavity with the Pound Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stim- ulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359nm output is estimated to be 72.5 mHz.展开更多
We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybr...We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybrid gain medium, i.e., a thulium ytterbium co-doped fiber (TYDF) and an HDF in conjunction with a simple half-opened linear cavity, which is formed by a broadband mirror and an output coupler reflector. Without the HDF, the TYDF laser operates at wavelengths of 1991 and 1999nm with a signal-to-noise ratio of more than 34dB and the slope efficiency of 26.16 %. With the HDF, dual-wavelength output lines are obtained at 2075 and 2083nm with signal-to-noise ratios of more than difference between the two peaks of less than 1 dB at 17dB, 3dB bandwidth of less than 0.2nm and the power the TYDF laser pump power of 320roW.展开更多
文摘通过LD端面抽运Nd∶YAG激光腔镜膜系的合理设计,抑制Nd∶YAG晶体最强跃迁对应的1064 nm波长和相邻的1319 nm波长的激光振荡,成功实现了1338 nm单波长激光输出。实验中对比了平平和平凹腔型,研究了连续运转和声光调Q模式下的激光输出。连续运转模式时,在12.9 W的抽运功率下,获得了最高3.25 W的1338 nm激光输出;声光调Q模式下,1338 nm激光的平均输出功率和脉冲宽度随着重复频率的减小而下降。在12.9 W的抽运功率下,当声光调Q重复频率从15 k Hz减少到5 k Hz,平均输出功率由2.8 W降低到1.9 W,对应的脉冲峰值功率由1.7 k W升高到5.4 k W。
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science&Technology Cooperation Program of China under Grant No 2010DFR10900
文摘The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633nm output frequency to a super-cavity with the Pound Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stim- ulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359nm output is estimated to be 72.5 mHz.
基金Supported by the University of Malaya under Grant No PG175-2015B
文摘We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybrid gain medium, i.e., a thulium ytterbium co-doped fiber (TYDF) and an HDF in conjunction with a simple half-opened linear cavity, which is formed by a broadband mirror and an output coupler reflector. Without the HDF, the TYDF laser operates at wavelengths of 1991 and 1999nm with a signal-to-noise ratio of more than 34dB and the slope efficiency of 26.16 %. With the HDF, dual-wavelength output lines are obtained at 2075 and 2083nm with signal-to-noise ratios of more than difference between the two peaks of less than 1 dB at 17dB, 3dB bandwidth of less than 0.2nm and the power the TYDF laser pump power of 320roW.