期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于ResNeXt和改进nnU-Net的新冠感染早期诊断方法
1
作者 徐皓 田振宇 +2 位作者 李超凡 崔欣欣 杨建兰 《计算机与现代化》 2023年第6期21-26,共6页
新型冠状病毒感染早期感染表现为肺浑浊程度和密度增加等特征,为了解决早期患者电子计算机断层扫描(Com⁃puted Tomogra,CT)诊断与肺部病灶定位困难这一问题,提出一种ResNeXt和改进型nnU-Net(no-new-Net)的COVID 19(Corona Virus Disease... 新型冠状病毒感染早期感染表现为肺浑浊程度和密度增加等特征,为了解决早期患者电子计算机断层扫描(Com⁃puted Tomogra,CT)诊断与肺部病灶定位困难这一问题,提出一种ResNeXt和改进型nnU-Net(no-new-Net)的COVID 19(Corona Virus Disease 2019)诊断与肺部病灶分割实验方案。ResNeXt模型分类平均准确率Accuracy为0.8554,AUC面积为0.8951,精确率Precision为0.8321,F1得分为0.8132,改进型nnU-Net模型病灶分割平均Dice系数达到0.7663,相较其他模型分割能力综合提高16.4%。实验结果表明该方案能够增强新冠早期肺部CT图像感染特征提取能力,高效实现疾病分型和精准分割病灶。 展开更多
关键词 ResNeXt 改进型nnu-net 新冠感染早期诊断 肺部分割
下载PDF
基于改进的nnU-Net胰腺分割模型 被引量:1
2
作者 龚晓庆 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期594-600,共7页
CT扫描是腹部器官疾病的常规检查手段,准确地对腹部器官进行自动分割能够给医生提供辅助诊疗信息。但腹部CT影像中器官类型多、背景复杂等情况给腹部器官分割带来挑战,尤其是胰腺在CT影像中存在边界模糊的特点,导致现有器官分割模型难... CT扫描是腹部器官疾病的常规检查手段,准确地对腹部器官进行自动分割能够给医生提供辅助诊疗信息。但腹部CT影像中器官类型多、背景复杂等情况给腹部器官分割带来挑战,尤其是胰腺在CT影像中存在边界模糊的特点,导致现有器官分割模型难以准确分割胰腺。为此,该文针对胰腺分割存在分割边界不准确的问题,基于nnU-Net医学影像分割自适应框架,设计了一种具有边界感知机制的胰腺器官分割模型。该模型在分割网络中嵌入边界感知模块来引导分割网络关注目标边界特征的有效提取;此外,模型将传统分割网络模块提取的语义特征和边界感知模块提取的边界特征进行融合,以有效缓解胰腺器官边界特征提取不完整的问题,从而实现更精准的胰腺器官分割。所提模型在NIH胰腺分割公开数据集上分割准确率达到0.879,分割效果优于现有器官分割模型。 展开更多
关键词 CT影像 胰腺器官分割 nnu-net分割网络 特征融合
下载PDF
基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割 被引量:5
3
作者 霍璐 胡晓欣 +3 位作者 肖勤 顾雅佳 褚旭 姜娈 《波谱学杂志》 北大核心 2021年第3期367-380,共14页
在乳腺动态增强磁共振(DCE-MR)图像中,乳房分割和腺体分割是进行乳腺癌风险评估的关键步骤.为实现在三维脂肪抑制乳腺DCE-MR图像中乳房和腺体的自动分割,本文提出一种基于nnU-Net的自动分割模型,利用U-Net分层学习图像特征的优势,融合... 在乳腺动态增强磁共振(DCE-MR)图像中,乳房分割和腺体分割是进行乳腺癌风险评估的关键步骤.为实现在三维脂肪抑制乳腺DCE-MR图像中乳房和腺体的自动分割,本文提出一种基于nnU-Net的自动分割模型,利用U-Net分层学习图像特征的优势,融合深层特征与浅层特征,得到乳房分割和腺体分割结果.同时,基于nnU-Net策略,所使用的模型能根据图像参数自动进行预处理和数据扩增,并动态调整网络结构和参数配置.实验结果表明,在具有多样化参数的三维脂肪抑制乳腺DCE-MR图像数据集上,该模型能准确、有效地实现乳房和腺体分割,平均Dice相似系数分别达到0.969±0.007和0.893±0.054. 展开更多
关键词 乳腺动态增强磁共振图像 乳房分割 腺体分割 深度学习 nnu-net模型
下载PDF
基于深度学习的心脏磁共振图像分割
4
作者 刘佳悦 孔凡辉 马吉权 《黑龙江大学自然科学学报》 CAS 2024年第5期597-605,共9页
心脏磁共振检查是用于评估心脏结构和功能的一种非侵入式的医学成像技术,与其他医学成像技术相比,不存在辐射伤害并且更擅长捕捉软组织细节,可为医生提供关于心脏结构和功能的详细信息,在心脏疾病的诊断和治疗中发挥着至关重要的作用。... 心脏磁共振检查是用于评估心脏结构和功能的一种非侵入式的医学成像技术,与其他医学成像技术相比,不存在辐射伤害并且更擅长捕捉软组织细节,可为医生提供关于心脏结构和功能的详细信息,在心脏疾病的诊断和治疗中发挥着至关重要的作用。为了精准分割心脏磁共振图像(Magnetic resonance image,MRI),在nnU-Net自适应分割框架的基础上提出基于改进nnU-Net的分割方法。通过在编码器部分应用残差模块代替原始卷积以缓解梯度消失问题并增强特征学习,利用在最底层瓶颈部分引入十字交叉注意力模块以捕获长距离依赖关系并提升模型的特征表达能力,此外,在跳跃连接部分加入卷积块注意力模块以减小噪声干扰并聚焦于关键特征。在心脏自动诊断挑战(Automatic cardiac diagnosis challenge,ACDC)数据集上进行实验,结果表明基于改进nnU-Net的分割方法具有更精确的分割效果。 展开更多
关键词 心脏分割 磁共振图像 nnu-net 深度学习
下载PDF
基于nnU-Net的临床影像组学模型对胆囊癌预后的预测价值 被引量:4
5
作者 金哲川 李起 +5 位作者 张东 陈晨 张健 杨敏 王秋萍 耿智敏 《中华消化外科杂志》 CAS CSCD 北大核心 2022年第5期656-664,共9页
目的探讨基于nnU-Net的临床影像组学模型对胆囊癌预后的预测价值。方法采用回顾性队列研究方法。收集2012年1月至2020年12月西安交通大学第一附属医院收治的168例行胆囊癌意向性根治术患者的临床病理资料;男61例,女107例;年龄为(64±... 目的探讨基于nnU-Net的临床影像组学模型对胆囊癌预后的预测价值。方法采用回顾性队列研究方法。收集2012年1月至2020年12月西安交通大学第一附属医院收治的168例行胆囊癌意向性根治术患者的临床病理资料;男61例,女107例;年龄为(64±11)岁。168例患者通过随机数字表法按3∶1随机分为训练集126例和测试集42例。168例患者术前均行增强CT检查。对于门静脉期图像,2位影像学医师手动勾画感兴趣区。应用nnU-Net三维全分辨率模型自动分割图像,采用5折交叉验证及Dice相似系数评估模型泛化能力和预测效能。应用Python软件(3.7.10版本)及Pyradiomics工具库(3.0.1版本)提取影像组学特征,应用R软件(4.1.1版本)筛选影像组学特征,应用方差法、Pearson相关性分析、单因素COX分析及随机生存森林模型筛选重要的影像组学特征并计算影像组学评分(Radscore)。应用X-tile软件(3.6.1版本)确定Radscore最佳截断值,COX比例风险回归模型分析患者预后的独立影响因素。将训练集数据导入R软件(4.1.1版本)构建胆囊癌生存预测临床影像组学列线图模型。基于Radscore风险、影响患者预后的独立临床因素分别构建胆囊癌生存预测Radscore风险模型、临床模型。采用一致性指数(C-index)、校准曲线及决策曲线评估不同胆囊癌生存预测模型的预测效能。观察指标:(1)胆囊癌CT检查门静脉期图像分割结果。(2)影像组学特征筛选及Radscore计算。(3)影响胆囊癌意向性根治术后患者预后因素分析。(4)不同胆囊癌生存预测模型的构建及评价。正态分布的计量资料以x±s表示。计数资料以绝对数或百分比表示,组间比较采用χ^(2)检验。单因素及多因素分析采用COX比例风险回归模型。采用寿命表法计算术后总生存率。结果(1)胆囊癌CT检查门静脉期图像分割结果。基于手动分割和nnU-Net模型自动分割的感兴趣区在训练集Dice相似系数为0.92±0.08,在测试集为0.74±0.15。(2)影像组学特征筛选及Radscore计算。168例患者共提取1502个影像组学特征,经方差法、Pearson相关性分析、单因素COX分析和随机森林生存模型筛选影像组学特征共13个(形状特征3个、高阶特征10个)。根据随机生存森林模型与X-tile软件分析结果显示:Radscore最佳截断值分别为6.68和25.01,训练集126例患者中Radscore低危(≤6.68)41例、中危(>6.68且<25.01)72例、高危(≥25.01)13例。(3)影响胆囊癌意向性根治术后患者预后因素分析。168例患者1、2、3年总生存率分别为75.8%、54.9%、45.7%。单因素分析结果显示:术前合并黄疸,血清CA19-9,Radscore风险(中危、高危),手术切除范围,病理学T分期,病理学N分期,肿瘤分化程度(中分化、低分化)是影响训练集患者预后的相关因素(风险比=3.28,3.00,3.78,6.34,4.48,6.43,3.35,7.44,15.11,95%可信区间为1.91~5.63,1.76~5.13,1.76~8.09,2.49~16.17,2.30~8.70,1.57~26.36,1.96~5.73,1.02~54.55,2.04~112.05,P<0.05)。多因素分析结果显示:术前合并黄疸,血清CA19-9,Radscore风险(高危),病理学N分期是训练集患者预后的独立影响因素(风险比=2.22,2.02,2.89,2.07,95%可信区间为1.20~4.11,1.11~3.68,1.04~8.01,1.15~3.73,P<0.05)。(4)不同胆囊癌生存预测模型的构建及评价。基于患者预后独立影响因素构建临床影像组学模型、Radscore风险模型、临床模型,其在训练集的C-index分别为0.775、0.651、0.747,在测试集的C-index分别为0.759、0.633、0.739。校准曲线显示:Radscore风险模型、临床模型及临床影像组学模型对患者生存的预测能力良好。决策曲线显示:临床影像组学模型对患者预后的预测能力优于Radscore风险模型及临床模型。结论基于nnU-net的临床影像组学模型对胆囊癌预后具有良好的预测效能。 展开更多
关键词 胆囊肿瘤 深度学习 nnu-net 影像组学 生存预测模型
原文传递
基于域对齐的深度学习方法在急性缺血性卒中的CT/MRI影像分割上的应用
6
作者 廖莲莲 文戈 胡兆霆 《分子影像学杂志》 2024年第4期386-390,共5页
目的基于平扫CT提出一种域对齐方法来显著提高急性缺血性卒中(AIS)的早期快速诊断能力。方法回顾性分析南方医科大学第三附属医院神经内科和神经外科2020年1月~2022年12月收治的入院后3 d内同时接受平扫头颅CT和MRI/DWI、ADC以及T2-Flai... 目的基于平扫CT提出一种域对齐方法来显著提高急性缺血性卒中(AIS)的早期快速诊断能力。方法回顾性分析南方医科大学第三附属医院神经内科和神经外科2020年1月~2022年12月收治的入院后3 d内同时接受平扫头颅CT和MRI/DWI、ADC以及T2-Flair序列扫描的AIS患者,构建了一个由318例AIS病例组成的成对CT/MRI影像数据集,分别对每一组配对的教师-学生影像特征进行归一化;再以8∶2的比例随机分为训练集和验证集。设计一种新的生成性对抗性网络来对齐特征层上的跨模式输入,将细节丰富的MRI图像中的语义知识传递到CT图像中进行AIS分割,开发了一种新的域适应算法(Our DA)。结果与目前性能表现较优异的医学影像分割模型nnUNet相比,Our DA明显优于nnU-Net,每一层验证集之间的分割精度提升约15%。结论本研究构建的Our DA模型基于MRI/DWI序列的影像特征并迁移到平扫头颅CT上,对平扫头颅CT上的AIS病灶具有较高的自动分割性能,有助于早期自动识别AIS病灶。 展开更多
关键词 急性缺血性卒中 平扫头颅CT 区域对齐 深度学习 自动分割 nnU型网络结构
下载PDF
基于组合U-Net网络的CT图像头颈放疗危及器官自动分割 被引量:1
7
作者 贺宝春 贾富仓 《集成技术》 2020年第2期17-24,共8页
CT图像头颈分割面临着以下难点:CT图像的低对比度导致边界不清,图像扫描间距过大导致冠状面和矢状面图像分辨率低,头颈中待分割的22个器官对于神经网络构建建模的需求不同,且由于存在极小器官造成了类间不平衡。为解决上述问题,该文提... CT图像头颈分割面临着以下难点:CT图像的低对比度导致边界不清,图像扫描间距过大导致冠状面和矢状面图像分辨率低,头颈中待分割的22个器官对于神经网络构建建模的需求不同,且由于存在极小器官造成了类间不平衡。为解决上述问题,该文提出一种U-Net组合模型——由3种U-Net模型组成,分别是2D U-Net模型、3D U-Net模型及3D-small U-Net模型。其中,2D U-Net模型用于厚层图像的分割,3D U-Net模型利用三维空间信息,3D-small U-Net模型用于分割最小的两个器官以解决类不平衡问题。该方法在MICCAI 2019 StructSeg头颈放疗危及器官分割任务中取得了第2名的成绩,平均DSC系数为80.66%,95%豪斯道夫距离为2.96 mm。 展开更多
关键词 头颈 危及器官 图像分割 nnu-net 组合模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部