We introduce a novel switching mechanism that relies on the bistability of a simple nonlinear electrical resonator which incorporates a varactor diode as its capacitive element. The switching action can be made fast a...We introduce a novel switching mechanism that relies on the bistability of a simple nonlinear electrical resonator which incorporates a varactor diode as its capacitive element. The switching action can be made fast and is self-contained in that no further circuitry is necessary. Unlike a flip-flop, whose state is flipped by applying a TTL pulse, this nonlinear switch can be engaged external to the circuit via magnetic, inductive or capacitive coupling;in this way, the switch becomes intrinsically touch-sensitive. Alternatively, the switching action can also be accomplished using frequency-shift-keying (FSK) modulation, which holds the promise of fast manipulation of the memory state. We demonstrate the potential application of these ideas by constructing a touch-sensitive LED lattice.展开更多
The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,th...The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect.However,few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque.Here,we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures.A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm^(-2))(1 Oe=79.5775 A·m^(-1)).The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106A·cm^(-2).Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect.展开更多
Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The ma...Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn_3X family such as Mn_3Sn and Mn_3Ge.Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics,but also have great importance for driving the nontrivial topological properties towards practical applications.Here,we report remarkable AHE,anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir_(20)Mn_(80)antiferromagnet,which is one of the most widely used antiferromagnetic materials in industrial spintronics.The ab initio calculations suggest that the Ir_4Mn_(16)(IrMn_4)or Mn_3Ir nanocrystals hold nontrivial electronic band structures,which may contribute to the observed intriguing magnetotransport properties in the Ir_(20)Mn_(80).Further,we demonstrate the spin–orbit torque switching of the antiferromagnetic Ir_(20)Mn_(80)by the spin Hall current of Pt.The presented results highlight a great potential of the magnetron-sputtered Ir_(20)Mn_(80)film for exploring the topological antiferromagnet-based physics and spintronics applications.展开更多
文摘We introduce a novel switching mechanism that relies on the bistability of a simple nonlinear electrical resonator which incorporates a varactor diode as its capacitive element. The switching action can be made fast and is self-contained in that no further circuitry is necessary. Unlike a flip-flop, whose state is flipped by applying a TTL pulse, this nonlinear switch can be engaged external to the circuit via magnetic, inductive or capacitive coupling;in this way, the switch becomes intrinsically touch-sensitive. Alternatively, the switching action can also be accomplished using frequency-shift-keying (FSK) modulation, which holds the promise of fast manipulation of the memory state. We demonstrate the potential application of these ideas by constructing a touch-sensitive LED lattice.
基金the National Natural Science Foundation of China(Grant Nos.91963201 and 51671098)the 111 Project(Grant No.B20063)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University PCSIRT(Grant No.IRT16R35)the Natural Science Foundation of Gansu Province,China(Grant No.22JR5RA474).
文摘The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect.However,few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque.Here,we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures.A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm^(-2))(1 Oe=79.5775 A·m^(-1)).The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106A·cm^(-2).Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect.
基金the Tencent Foundation through the XPLORER PRIZEthe National Key Research and Development Program of China(Grant Nos.2018YFB0407602 and 2021YFB3601303)the National Natural Science Foundation of China(Grant Nos.61627813,11904017,92164206,and 61571023)。
文摘Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn_3X family such as Mn_3Sn and Mn_3Ge.Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics,but also have great importance for driving the nontrivial topological properties towards practical applications.Here,we report remarkable AHE,anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir_(20)Mn_(80)antiferromagnet,which is one of the most widely used antiferromagnetic materials in industrial spintronics.The ab initio calculations suggest that the Ir_4Mn_(16)(IrMn_4)or Mn_3Ir nanocrystals hold nontrivial electronic band structures,which may contribute to the observed intriguing magnetotransport properties in the Ir_(20)Mn_(80).Further,we demonstrate the spin–orbit torque switching of the antiferromagnetic Ir_(20)Mn_(80)by the spin Hall current of Pt.The presented results highlight a great potential of the magnetron-sputtered Ir_(20)Mn_(80)film for exploring the topological antiferromagnet-based physics and spintronics applications.