Cement-free castables have attracted significant attention due to their superior thermal-mechanical properties and rapid dry-out in comparison to cement-bonded refractory castables.However,drying industrial-scale spec...Cement-free castables have attracted significant attention due to their superior thermal-mechanical properties and rapid dry-out in comparison to cement-bonded refractory castables.However,drying industrial-scale specimens can pose more challenges than lab-scale samples.In this study,the dry-out behavior and explosion resistance of microsilica-gel bonded nocement castables(NCCs)were investigated on both lab-and industrial-scale specimens,employing various drying agents.First,the fast dry-out mechanism was assessed using thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),and scanning electron microscopy(SEM)on lab-scale small samples.Then,the drying behavior of industrial-scale large samples(300 mm×300 mm×300 mm cubes,approximately 80 kg)was studied using a unique macro-thermo-balance(macro-TGA).The results showed that EMSIL-DRY^(®)reduced the temperature level for maximum dewatering rate and effectively prevented explosions during heat-up,compared to other polymer fibres.The use of a specialty drying agent(EMSIL-DRY^(®))significantly improved the explosion resistance,as demonstrated by the production of a perfect 400 kg block fired to 850℃at a rate of 50℃·h^(-1).This research contributes to the understanding and application of cement-free castables in industrial settings.展开更多
Microsilica-gel bonded bauxite based no-cement refractory castables(NCCs)have been produced using two readily available dispersants.These NCCs were compared to NCC with Siox X-Zero,a purposely-developed product for ...Microsilica-gel bonded bauxite based no-cement refractory castables(NCCs)have been produced using two readily available dispersants.These NCCs were compared to NCC with Siox X-Zero,a purposely-developed product for microsilica-gel bonded no-cement castable systems to control flow properties and setting characteristics.Three mixing and curing temperatures were applied:5℃,20℃and 35℃.The results show that setting-behaviour and mechanical properties strongly vary with the type of dispersant and the curing temperature.However,both setting and strength are less temperature dependent in the castables with Siox X-Zero.Furthermore,the drying and firing of microsilica-gel bonded NCCs were investigated.Since microsilica-gel bond system contains only a small amount of bound water,the castables can be fired at very high heating rates,once the free water has been removed.展开更多
文摘Cement-free castables have attracted significant attention due to their superior thermal-mechanical properties and rapid dry-out in comparison to cement-bonded refractory castables.However,drying industrial-scale specimens can pose more challenges than lab-scale samples.In this study,the dry-out behavior and explosion resistance of microsilica-gel bonded nocement castables(NCCs)were investigated on both lab-and industrial-scale specimens,employing various drying agents.First,the fast dry-out mechanism was assessed using thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),and scanning electron microscopy(SEM)on lab-scale small samples.Then,the drying behavior of industrial-scale large samples(300 mm×300 mm×300 mm cubes,approximately 80 kg)was studied using a unique macro-thermo-balance(macro-TGA).The results showed that EMSIL-DRY^(®)reduced the temperature level for maximum dewatering rate and effectively prevented explosions during heat-up,compared to other polymer fibres.The use of a specialty drying agent(EMSIL-DRY^(®))significantly improved the explosion resistance,as demonstrated by the production of a perfect 400 kg block fired to 850℃at a rate of 50℃·h^(-1).This research contributes to the understanding and application of cement-free castables in industrial settings.
文摘Microsilica-gel bonded bauxite based no-cement refractory castables(NCCs)have been produced using two readily available dispersants.These NCCs were compared to NCC with Siox X-Zero,a purposely-developed product for microsilica-gel bonded no-cement castable systems to control flow properties and setting characteristics.Three mixing and curing temperatures were applied:5℃,20℃and 35℃.The results show that setting-behaviour and mechanical properties strongly vary with the type of dispersant and the curing temperature.However,both setting and strength are less temperature dependent in the castables with Siox X-Zero.Furthermore,the drying and firing of microsilica-gel bonded NCCs were investigated.Since microsilica-gel bond system contains only a small amount of bound water,the castables can be fired at very high heating rates,once the free water has been removed.