Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-qual...Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.展开更多
Studying user electricity consumption behavior is crucial for understanding their power usage patterns.However,the traditional clustering methods fail to identify emerging types of electricity consumption behavior.To ...Studying user electricity consumption behavior is crucial for understanding their power usage patterns.However,the traditional clustering methods fail to identify emerging types of electricity consumption behavior.To address this issue,this paper introduces a statistical analysis of clusters and evaluates the set of indicators for power usage patterns.The fuzzy C-means clustering algorithm is then used to analyze 6 months of electricity consumption data in 2017 from energy storage equipment,agricultural drainage irrigation,port shore power,and electric vehicles.Finally,the proposed method is validated through experiments,where the Davies-Bouldin index and profile coefficient are calculated and compared.Experiments showed that the optimal number of clusters is 4.This study demonstrates the potential of using a fuzzy C-means clustering algorithmin identifying emerging types of electricity consumption behavior,which can help power system operators and policymakers to make informed decisions and improve energy efficiency.展开更多
On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate th...On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems.展开更多
Current power systems face significant challenges in supporting large-scale access to new energy sources,and the potential of existing flexible resources needs to be fully explored from the power supply,grid,and custo...Current power systems face significant challenges in supporting large-scale access to new energy sources,and the potential of existing flexible resources needs to be fully explored from the power supply,grid,and customer perspectives.This paper proposes a multi-objective electricity consumption optimization strategy considering the correlation between equipment and electricity consumption.It constructs a multi-objective electricity consumption optimization model that considers the correlation between equipment and electricity consumption to maximize economy and comfort.The results show that the proposed method can accurately assess the potential for electricity consumption optimization and obtain an optimal multi-objective electricity consumption strategy based on customers’actual electricity consumption demand.展开更多
Rapidly increasing cryptocurrency prices have encouraged cryptocurrency miners to participate in cryptocurrency production,increasing network hashrates and electricity consumption.Growth in network hashrates has furth...Rapidly increasing cryptocurrency prices have encouraged cryptocurrency miners to participate in cryptocurrency production,increasing network hashrates and electricity consumption.Growth in network hashrates has further crowded out small cryptocurrency investors owing to the heightened costs of mining hardware and electricity.These changes prompt cryptocurrency miners to become new investors,leading to cryptocurrency price increases.The potential bidirectional relationship between cryptocurrency price and electricity consumption remains unidentified.Hence,this research thus utilizes July 312015–July 122019 data from 13 cryptocurrencies to investigate the short-and long-run causal effects between cryptocurrency transaction and electricity consumption.Particularly,we consider structural breaks induced by external shocks through stationary analysis and comovement relationships.Over the examined time period,we found that the series of cryptocurrency transaction and electricity consumption gradually returns to mean convergence after undergoing daily shocks,with prices trending together with hashrates.Transaction fluctuations exert both a temporary effect and permanent influence on electricity consumption.Therefore,owing to the computational power deployed to wherever high profit is found,transactions are vital determinants of electricity consumption.展开更多
With the rapid development of artificial intelligence and computer technology,grid corporations have also begun to move towards comprehensive intelligence and informatization.However,data-based informatization can bri...With the rapid development of artificial intelligence and computer technology,grid corporations have also begun to move towards comprehensive intelligence and informatization.However,data-based informatization can bring about the risk of privacy exposure of fine-grained information such as electricity consumption data.The modeling of electricity consumption data can help grid corporations to have a more thorough understanding of users’needs and their habits,providing better services for users.Nevertheless,users’electricity consumption data is sensitive and private.In order to achieve highly efficient analysis of massive private electricity consumption data without direct access,a blockchain-based federated learning method is proposed for users’electricity consumption forecasting in this paper.Specifically,a blockchain systemis established based on a proof of quality(PoQ)consensus mechanism,and a multilayer hybrid directional long short-term memory(MHD-LSTM)network model is trained for users’electricity consumption forecasting via the federal learning method.In this way,the model of the MHD-LSTM network is able to avoid suffering from severe security problems and can only share the network parameters without exchanging raw electricity consumption data,which is decentralized,secure and reliable.The experimental result shows that the proposed method has both effectiveness and high-accuracy under the premise of electricity consumption data’s privacy preservation,and can achieve better performance when compared to traditional long short-term memory(LSTM)and bidirectional LSTM(BLSTM).展开更多
With the rapid development of the internet of things(IoT),electricity consumption data can be captured and recorded in the IoT cloud center.This provides a credible data source for enterprise credit scoring,which is o...With the rapid development of the internet of things(IoT),electricity consumption data can be captured and recorded in the IoT cloud center.This provides a credible data source for enterprise credit scoring,which is one of the most vital elements during the financial decision-making process.Accordingly,this paper proposes to use deep learning to train an enterprise credit scoring model by inputting the electricity consumption data.Instead of predicting the credit rating,our method can generate an absolute credit score by a novel deep ranking model–ranking extreme gradient boosting net(rankXGB).To boost the performance,the rankXGB model combines several weak ranking models into a strong model.Due to the high computational cost and the vast amounts of data,we design an edge computing framework to reduce the latency of enterprise credit evaluation.Specially,we design a two-stage deep learning task architecture,including a cloud-based weak credit ranking and an edge-based credit score calculation.In the first stage,we send the electricity consumption data of the evaluated enterprise to the computing cloud server,where multiple weak-ranking networks are executed in parallel to produce multiple weak-ranking results.In the second stage,the edge device fuses multiple ranking results generated in the cloud server to produce a more reliable ranking result,which is used to calculate an absolute credit score by score normalization.The experiments demonstrate that our method can achieve accurate enterprise credit evaluation quickly.展开更多
In the process of my country’s energy transition,the clean energy of hydropower,wind power and photovoltaic power generation has ushered in great development,but due to the randomness and volatility of its output,it ...In the process of my country’s energy transition,the clean energy of hydropower,wind power and photovoltaic power generation has ushered in great development,but due to the randomness and volatility of its output,it has caused a certain waste of clean energy power generation resources.Regarding the purchase and sale of electricity by electricity retailers under the condition of limited clean energy consumption,this paper establishes a quantitative model of clean energy restricted electricity fromthe perspective of power system supply and demand balance.Then it analyzes the source-charge dual uncertain factors in the electricity retailer purchasing and selling scenarios in the mid-to long-term electricity market and the day-ahead market.Through the multi-scenario analysis method,the uncertain clean energy consumption and the user’s power demand are combined to form the electricity retailer’s electricity purchase and sales scene,and the typical scene is obtained by using the hierarchical clustering algorithm.This paper establishes a electricity retailer’s risk decisionmodel for purchasing and selling electricity in themid-and long-term market and reduce-abandonment market,and takes the maximum profit expectation of the electricity retailer frompurchasing and selling electricity as the objective function.At the same time,in themediumand longterm electricity market and the day-ahead market,the electricity retailer’s purchase cost,electricity sales income,deviation assessment cost and electricity purchase and sale risk are considered.The molecular results show that electricity retailers can obtain considerable profits in the reduce-abandonment market by optimizing their own electricity purchase and sales strategies,on the premise of balancing profits and risks.展开更多
In the context of the joint operation of China’s intra-provincial markets and inter-provincial trading,how to meet the load demand and energy consumption using inter-provincial renewable energy trading is a key probl...In the context of the joint operation of China’s intra-provincial markets and inter-provincial trading,how to meet the load demand and energy consumption using inter-provincial renewable energy trading is a key problem.The combined operation of intra-provincial and inter-provincial markets provides a new way for provincial power companies to optimize and clear the intra-provincial power market,complete the intra-provincial consumption responsibility weight index,and consume renewable energy across provinces and regions.This paper combines power generation and consumption within the province,uses inter-provincial renewable energy trading tomeet the load demand within the province and completes the index of intra-provincial consumption responsibility weights.The intra-provincial market trading and inter-provincial market clearing are respectively taken as the upper and lower levels of the model.Under the two-level electricity market operation framework,the upper-level model aims to minimize the expected total operating cost within the province considering the carbon emission cost and the weight of the consumption responsibility,while the lower-level model aims to minimize the inter-provincial renewable energy purchasing cost.Finally,the influence of inter-provincial transaction mechanism,risk aversion coefficient,voucher price,and responsibility weight on operating cost is analyzed.Simulation is used to verify that the proposed model can meet the requirements of the provincial load power consumption and the consumption responsibility weight index,and promote the consumption of renewable energy.展开更多
The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective ut...The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.展开更多
With proliferation of electric appliances, residential electricity consumption, in particular the air conditioning load becomes more and more important and shares higher and higher percentage in total consumption in l...With proliferation of electric appliances, residential electricity consumption, in particular the air conditioning load becomes more and more important and shares higher and higher percentage in total consumption in large cities like Shanghai. The paper reports in detail the survey on characteristics of residential electric consumption, in particular the air conditioning consumption. To optimize power system operation and expand power market, the paper concludes that power industry must learn to investigate, open up and adapt itself to power market economy.展开更多
Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the...Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.展开更多
Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Us...Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Using piecewise polynomial interpolation thought,this model can dynamically predict the general trend of time series data.Combined with low-order polynomial,the cubic spline interpolation has smaller error,avoids the Runge phenomenon of high-order polynomial,and has better approximation effect.Meanwhile,prediction is implemented with the newest information according to the rolling and feedback mechanism and fluctuating error is controlled well to improve prediction accuracy in time-varying environment.Case study using the living electricity consumption data of Jiangsu province in 2008 is presented to demonstrate the effectiveness of the proposed model.展开更多
The influence of climatic variables and cooling degree days (CDD) on summer residential electricity consumption for the period 1980 through 1994 in Hong Kong was investigated. The association between Clo, a measure of...The influence of climatic variables and cooling degree days (CDD) on summer residential electricity consumption for the period 1980 through 1994 in Hong Kong was investigated. The association between Clo, a measure of amount of Clothing insulation to maintain comfort, and residential electricity consumption was also examined. Utilizing monthly data and multiple regression analyses, it is discovered vapor pressure was not significantly related to electricity consumption while Cloud cover was negatively associated with electricity use. Climatic variables, CDD and Clo provided highly comparable results in modeling summer residential electricity consumption. Mean temperature and Cloud gave the best result. Clo yielded a slightly higher R2 value (0.867) than that of CDD (0.865) in the models. These results indicated that Clo could replace the weather variables and CDD to model electricity consumption.展开更多
By using data of daily electricity consumption and temperature for the period 2003–2007 in Shanghai, the variation of energy consumption and the correlations between energy consumption and temperature are analyzed. T...By using data of daily electricity consumption and temperature for the period 2003–2007 in Shanghai, the variation of energy consumption and the correlations between energy consumption and temperature are analyzed. The results indicate that winter and summer are the two peak seasons of energy consumption due to the urban residential heating and cooling demand. The base temperature of electricity and daily temperature is 10℃ in winter and 22℃ in summer respectively. When the outdoor temperature is below 10℃, the heating demand becomes obvious, and with over 22℃ the cooling demand. The spatial distribution of cooling degree-days(CDD) and heating degree-days(HDD) clearly shows urbanization effects. By the influence of urbanization the central city experiences greater CDD in summer and lower HDD in winter. The projected temperature for 2011–2050 implies a significant increase in CDD and a decrease in HDD. This may have implications on the future energy demand if the current energy consumption pattern does not change.展开更多
Due to the increase in the number of smart meter devices,a power grid generates a large amount of data.Analyzing the data can help in understanding the users’electricity consumption behavior and demands;thus,enabling...Due to the increase in the number of smart meter devices,a power grid generates a large amount of data.Analyzing the data can help in understanding the users’electricity consumption behavior and demands;thus,enabling better service to be provided to them.Performing power load profile clustering is the basis for mining the users’electricity consumption behavior.By examining the complexity,randomness,and uncertainty of the users’electricity consumption behavior,this paper proposes an ensemble clustering method to analyze this behavior.First,principle component analysis(PCA)is used to reduce the dimensions of the data.Subsequently,the single clustering method is used,and the majority is selected for integrated clustering.As a result,the users’electricity consumption behavior is classified into different modes,and their characteristics are analyzed in detail.This paper examines the electricity power data of 19 real users in China for simulation purposes.This manuscript provides a thorough analysis along with suggestions for the users’weekly electricity consumption behavior.The results verify the effectiveness of the proposed method.展开更多
The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simu...The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simultaneously. Therefore, it is of great significance to accurately predict the demand for electricity consumption for the production planning of electricity and the normal operation of the society. In this paper, a hybrid model is constructed to predict the electricity consumption in China. The structural breaks test of monthly electricity consumption in China from January 2010 to December 2016 is carried out by using the structural breaks unit root test. Based on the existence of structura breaks, the electricity consumption data are decomposed into low-frequency and high-frequency components by wavelet model, and the separated low frequency signal and high frequency signal are predicted by autoregressive integrated moving average(ARIMA) and nonlinear autoregressive neural network(NAR), respectively. Therefore the wavelet-ARIMA-NAR hybrid model is constructed. In order to compare the effect of the hybrid model, the structural time series(STS) model is applied to predicting the electricity consumption. The results of prediction error test show that the hybrid model is more accurate for electricity consumption prediction.展开更多
Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in th...Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods.展开更多
South Korea is an energy-guzzling country.Economic reasons in the country force its households to save more energy.Household energy consumption in South Korea has grown slow compared to other sectors and household ene...South Korea is an energy-guzzling country.Economic reasons in the country force its households to save more energy.Household energy consumption in South Korea has grown slow compared to other sectors and household energy consumption per capita is lower than the OECD (Organization for Economic Co-operation and Development) average.However,its per capita electricity use soared and expected to keep climbing mainly due to the increasing number of one-person household.To establish effective strategy against a possible electricity shortage,the amount of electricity energy consumption needs to be understood clearly first.We adopted both general survey and detailed survey for people living in apartment housings and collected data on electrical instrument use according to individual schedule.Based on these data,we tried to analyze electricity consumption patterns resulting from energy using activities at home and find out electricity using tendency according to each family member's characteristics in apartment housings.展开更多
Recently, urban high temperature phenomenon has become a problem which results from human activities, the increase in energy consumption, and land-cover change in urban areas. As extremely hot weather caused by urban ...Recently, urban high temperature phenomenon has become a problem which results from human activities, the increase in energy consumption, and land-cover change in urban areas. As extremely hot weather caused by urban high temperature continues, demand for power is increased and results in the degradation of electricity reserves. The current trend in climate change, regardless of the summer and winter power demand, is likely to have much effect on the power demand. Thus, sensitivity to electricity consumption in urban areas due to climate change was researched. The results show that, 1) the basic unit of the sensitivity to electricity consumption in the target areas is 1.25-1.58W/(m2.℃); 2) The maximum sensitivity is recorded at around 8:00 pm in the area crowded with commercial and business area. And in the business area, electricity consumption load is even from 9:00 am to 6:00 pm.展开更多
基金This research was funded by the National Nature Sciences Foundation of China(Grant No.42250410321).
文摘Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.
基金supported by the Science and Technology Project of State Grid Jiangxi Electric Power Corporation Limited‘Research on Key Technologies for Non-Intrusive Load Identification for Typical Power Industry Users in Jiangxi Province’(521852220004)。
文摘Studying user electricity consumption behavior is crucial for understanding their power usage patterns.However,the traditional clustering methods fail to identify emerging types of electricity consumption behavior.To address this issue,this paper introduces a statistical analysis of clusters and evaluates the set of indicators for power usage patterns.The fuzzy C-means clustering algorithm is then used to analyze 6 months of electricity consumption data in 2017 from energy storage equipment,agricultural drainage irrigation,port shore power,and electric vehicles.Finally,the proposed method is validated through experiments,where the Davies-Bouldin index and profile coefficient are calculated and compared.Experiments showed that the optimal number of clusters is 4.This study demonstrates the potential of using a fuzzy C-means clustering algorithmin identifying emerging types of electricity consumption behavior,which can help power system operators and policymakers to make informed decisions and improve energy efficiency.
文摘On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems.
文摘Current power systems face significant challenges in supporting large-scale access to new energy sources,and the potential of existing flexible resources needs to be fully explored from the power supply,grid,and customer perspectives.This paper proposes a multi-objective electricity consumption optimization strategy considering the correlation between equipment and electricity consumption.It constructs a multi-objective electricity consumption optimization model that considers the correlation between equipment and electricity consumption to maximize economy and comfort.The results show that the proposed method can accurately assess the potential for electricity consumption optimization and obtain an optimal multi-objective electricity consumption strategy based on customers’actual electricity consumption demand.
基金funding agencies in the public,commercial,or notfor-profit sectors.
文摘Rapidly increasing cryptocurrency prices have encouraged cryptocurrency miners to participate in cryptocurrency production,increasing network hashrates and electricity consumption.Growth in network hashrates has further crowded out small cryptocurrency investors owing to the heightened costs of mining hardware and electricity.These changes prompt cryptocurrency miners to become new investors,leading to cryptocurrency price increases.The potential bidirectional relationship between cryptocurrency price and electricity consumption remains unidentified.Hence,this research thus utilizes July 312015–July 122019 data from 13 cryptocurrencies to investigate the short-and long-run causal effects between cryptocurrency transaction and electricity consumption.Particularly,we consider structural breaks induced by external shocks through stationary analysis and comovement relationships.Over the examined time period,we found that the series of cryptocurrency transaction and electricity consumption gradually returns to mean convergence after undergoing daily shocks,with prices trending together with hashrates.Transaction fluctuations exert both a temporary effect and permanent influence on electricity consumption.Therefore,owing to the computational power deployed to wherever high profit is found,transactions are vital determinants of electricity consumption.
基金supported by the Technology Project of State Grid Tianjin Electric Power Company(KJ22-1-47).
文摘With the rapid development of artificial intelligence and computer technology,grid corporations have also begun to move towards comprehensive intelligence and informatization.However,data-based informatization can bring about the risk of privacy exposure of fine-grained information such as electricity consumption data.The modeling of electricity consumption data can help grid corporations to have a more thorough understanding of users’needs and their habits,providing better services for users.Nevertheless,users’electricity consumption data is sensitive and private.In order to achieve highly efficient analysis of massive private electricity consumption data without direct access,a blockchain-based federated learning method is proposed for users’electricity consumption forecasting in this paper.Specifically,a blockchain systemis established based on a proof of quality(PoQ)consensus mechanism,and a multilayer hybrid directional long short-term memory(MHD-LSTM)network model is trained for users’electricity consumption forecasting via the federal learning method.In this way,the model of the MHD-LSTM network is able to avoid suffering from severe security problems and can only share the network parameters without exchanging raw electricity consumption data,which is decentralized,secure and reliable.The experimental result shows that the proposed method has both effectiveness and high-accuracy under the premise of electricity consumption data’s privacy preservation,and can achieve better performance when compared to traditional long short-term memory(LSTM)and bidirectional LSTM(BLSTM).
基金This research was funded by National Natural Science Foundation of China (61906036)Science and Technology Project of State Grid Jiangsu Power Supply Company (No.J2021034).
文摘With the rapid development of the internet of things(IoT),electricity consumption data can be captured and recorded in the IoT cloud center.This provides a credible data source for enterprise credit scoring,which is one of the most vital elements during the financial decision-making process.Accordingly,this paper proposes to use deep learning to train an enterprise credit scoring model by inputting the electricity consumption data.Instead of predicting the credit rating,our method can generate an absolute credit score by a novel deep ranking model–ranking extreme gradient boosting net(rankXGB).To boost the performance,the rankXGB model combines several weak ranking models into a strong model.Due to the high computational cost and the vast amounts of data,we design an edge computing framework to reduce the latency of enterprise credit evaluation.Specially,we design a two-stage deep learning task architecture,including a cloud-based weak credit ranking and an edge-based credit score calculation.In the first stage,we send the electricity consumption data of the evaluated enterprise to the computing cloud server,where multiple weak-ranking networks are executed in parallel to produce multiple weak-ranking results.In the second stage,the edge device fuses multiple ranking results generated in the cloud server to produce a more reliable ranking result,which is used to calculate an absolute credit score by score normalization.The experiments demonstrate that our method can achieve accurate enterprise credit evaluation quickly.
文摘In the process of my country’s energy transition,the clean energy of hydropower,wind power and photovoltaic power generation has ushered in great development,but due to the randomness and volatility of its output,it has caused a certain waste of clean energy power generation resources.Regarding the purchase and sale of electricity by electricity retailers under the condition of limited clean energy consumption,this paper establishes a quantitative model of clean energy restricted electricity fromthe perspective of power system supply and demand balance.Then it analyzes the source-charge dual uncertain factors in the electricity retailer purchasing and selling scenarios in the mid-to long-term electricity market and the day-ahead market.Through the multi-scenario analysis method,the uncertain clean energy consumption and the user’s power demand are combined to form the electricity retailer’s electricity purchase and sales scene,and the typical scene is obtained by using the hierarchical clustering algorithm.This paper establishes a electricity retailer’s risk decisionmodel for purchasing and selling electricity in themid-and long-term market and reduce-abandonment market,and takes the maximum profit expectation of the electricity retailer frompurchasing and selling electricity as the objective function.At the same time,in themediumand longterm electricity market and the day-ahead market,the electricity retailer’s purchase cost,electricity sales income,deviation assessment cost and electricity purchase and sale risk are considered.The molecular results show that electricity retailers can obtain considerable profits in the reduce-abandonment market by optimizing their own electricity purchase and sales strategies,on the premise of balancing profits and risks.
基金supported by National Natural Science Foundation of China (51977127)Shanghai Municipal Science and Technology Commission (19020500800)“Shuguang Program” (20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘In the context of the joint operation of China’s intra-provincial markets and inter-provincial trading,how to meet the load demand and energy consumption using inter-provincial renewable energy trading is a key problem.The combined operation of intra-provincial and inter-provincial markets provides a new way for provincial power companies to optimize and clear the intra-provincial power market,complete the intra-provincial consumption responsibility weight index,and consume renewable energy across provinces and regions.This paper combines power generation and consumption within the province,uses inter-provincial renewable energy trading tomeet the load demand within the province and completes the index of intra-provincial consumption responsibility weights.The intra-provincial market trading and inter-provincial market clearing are respectively taken as the upper and lower levels of the model.Under the two-level electricity market operation framework,the upper-level model aims to minimize the expected total operating cost within the province considering the carbon emission cost and the weight of the consumption responsibility,while the lower-level model aims to minimize the inter-provincial renewable energy purchasing cost.Finally,the influence of inter-provincial transaction mechanism,risk aversion coefficient,voucher price,and responsibility weight on operating cost is analyzed.Simulation is used to verify that the proposed model can meet the requirements of the provincial load power consumption and the consumption responsibility weight index,and promote the consumption of renewable energy.
基金National Natural Science Foundation of China(Grant No.51505335)Industry University Cooperation Collaborative Education Project of the Department of Higher Education of the Ministry of Education of China(Grant No.202102517001)Doctor Startup Projects of TUTE of China(Grant No.KYQD1806)。
文摘The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.
文摘With proliferation of electric appliances, residential electricity consumption, in particular the air conditioning load becomes more and more important and shares higher and higher percentage in total consumption in large cities like Shanghai. The paper reports in detail the survey on characteristics of residential electric consumption, in particular the air conditioning consumption. To optimize power system operation and expand power market, the paper concludes that power industry must learn to investigate, open up and adapt itself to power market economy.
文摘Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.
基金This work has been supported by the National 863 Key Project Grant No. 2008AA042901, National Natural Science Foundation of China Grant No.70631003 and No.90718037, Foundation of Hefei University of Technology Grant No. 2010HGXJ0083.
文摘Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Using piecewise polynomial interpolation thought,this model can dynamically predict the general trend of time series data.Combined with low-order polynomial,the cubic spline interpolation has smaller error,avoids the Runge phenomenon of high-order polynomial,and has better approximation effect.Meanwhile,prediction is implemented with the newest information according to the rolling and feedback mechanism and fluctuating error is controlled well to improve prediction accuracy in time-varying environment.Case study using the living electricity consumption data of Jiangsu province in 2008 is presented to demonstrate the effectiveness of the proposed model.
文摘The influence of climatic variables and cooling degree days (CDD) on summer residential electricity consumption for the period 1980 through 1994 in Hong Kong was investigated. The association between Clo, a measure of amount of Clothing insulation to maintain comfort, and residential electricity consumption was also examined. Utilizing monthly data and multiple regression analyses, it is discovered vapor pressure was not significantly related to electricity consumption while Cloud cover was negatively associated with electricity use. Climatic variables, CDD and Clo provided highly comparable results in modeling summer residential electricity consumption. Mean temperature and Cloud gave the best result. Clo yielded a slightly higher R2 value (0.867) than that of CDD (0.865) in the models. These results indicated that Clo could replace the weather variables and CDD to model electricity consumption.
基金supported by the National Natural Science Fundation of China (No. NSFC70933005)CAS Pilot Special Project (No. XDA05090204)China Clean Development Mechanism Fund (No. 1212117)
文摘By using data of daily electricity consumption and temperature for the period 2003–2007 in Shanghai, the variation of energy consumption and the correlations between energy consumption and temperature are analyzed. The results indicate that winter and summer are the two peak seasons of energy consumption due to the urban residential heating and cooling demand. The base temperature of electricity and daily temperature is 10℃ in winter and 22℃ in summer respectively. When the outdoor temperature is below 10℃, the heating demand becomes obvious, and with over 22℃ the cooling demand. The spatial distribution of cooling degree-days(CDD) and heating degree-days(HDD) clearly shows urbanization effects. By the influence of urbanization the central city experiences greater CDD in summer and lower HDD in winter. The projected temperature for 2011–2050 implies a significant increase in CDD and a decrease in HDD. This may have implications on the future energy demand if the current energy consumption pattern does not change.
基金supported by the State Grid Science and Technology Project (No.5442AI90009)Natural Science Foundation of China (No. 6170337)
文摘Due to the increase in the number of smart meter devices,a power grid generates a large amount of data.Analyzing the data can help in understanding the users’electricity consumption behavior and demands;thus,enabling better service to be provided to them.Performing power load profile clustering is the basis for mining the users’electricity consumption behavior.By examining the complexity,randomness,and uncertainty of the users’electricity consumption behavior,this paper proposes an ensemble clustering method to analyze this behavior.First,principle component analysis(PCA)is used to reduce the dimensions of the data.Subsequently,the single clustering method is used,and the majority is selected for integrated clustering.As a result,the users’electricity consumption behavior is classified into different modes,and their characteristics are analyzed in detail.This paper examines the electricity power data of 19 real users in China for simulation purposes.This manuscript provides a thorough analysis along with suggestions for the users’weekly electricity consumption behavior.The results verify the effectiveness of the proposed method.
基金National Social Science Foundation of China(No.18AGL028)Social Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.2018SJZDI070)Social Science Foundations of the Jiangsu Province,China(Nos.16ZZB004,17ZTB005)
文摘The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simultaneously. Therefore, it is of great significance to accurately predict the demand for electricity consumption for the production planning of electricity and the normal operation of the society. In this paper, a hybrid model is constructed to predict the electricity consumption in China. The structural breaks test of monthly electricity consumption in China from January 2010 to December 2016 is carried out by using the structural breaks unit root test. Based on the existence of structura breaks, the electricity consumption data are decomposed into low-frequency and high-frequency components by wavelet model, and the separated low frequency signal and high frequency signal are predicted by autoregressive integrated moving average(ARIMA) and nonlinear autoregressive neural network(NAR), respectively. Therefore the wavelet-ARIMA-NAR hybrid model is constructed. In order to compare the effect of the hybrid model, the structural time series(STS) model is applied to predicting the electricity consumption. The results of prediction error test show that the hybrid model is more accurate for electricity consumption prediction.
基金This work is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB520028)the Collaborative Innovation Center of Jiangsu Maritime Institute。
文摘Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods.
基金Funded by the National Research Foundation of Korea (NRF) of the Korea Government (MEST) (No.2011-0029867)
文摘South Korea is an energy-guzzling country.Economic reasons in the country force its households to save more energy.Household energy consumption in South Korea has grown slow compared to other sectors and household energy consumption per capita is lower than the OECD (Organization for Economic Co-operation and Development) average.However,its per capita electricity use soared and expected to keep climbing mainly due to the increasing number of one-person household.To establish effective strategy against a possible electricity shortage,the amount of electricity energy consumption needs to be understood clearly first.We adopted both general survey and detailed survey for people living in apartment housings and collected data on electrical instrument use according to individual schedule.Based on these data,we tried to analyze electricity consumption patterns resulting from energy using activities at home and find out electricity using tendency according to each family member's characteristics in apartment housings.
基金Project(NRF-20110030631) supported by the National Research Foundation of Korea Grant funded by the Korean Government
文摘Recently, urban high temperature phenomenon has become a problem which results from human activities, the increase in energy consumption, and land-cover change in urban areas. As extremely hot weather caused by urban high temperature continues, demand for power is increased and results in the degradation of electricity reserves. The current trend in climate change, regardless of the summer and winter power demand, is likely to have much effect on the power demand. Thus, sensitivity to electricity consumption in urban areas due to climate change was researched. The results show that, 1) the basic unit of the sensitivity to electricity consumption in the target areas is 1.25-1.58W/(m2.℃); 2) The maximum sensitivity is recorded at around 8:00 pm in the area crowded with commercial and business area. And in the business area, electricity consumption load is even from 9:00 am to 6:00 pm.