The red fruits of Pseudospondias microcarpa (A. Rich) Engl. are widely consumed by the populations of northern Congo for their sweet and tangy flavor as well as for their characteristic smell. The objective of this st...The red fruits of Pseudospondias microcarpa (A. Rich) Engl. are widely consumed by the populations of northern Congo for their sweet and tangy flavor as well as for their characteristic smell. The objective of this study was to show the food potential of the fruits of this plant for their valorization. Organic solvent extracts were prepared and subjected to phytochemical screening to determine the nutrients and phytonutrients of this fruit. Raw juice was extracted by trituration without adding water and subjected to physicochemical and biochemical analyses in order to determine its quality and its antiradical activity. The raw juice obtained is moderately acidic (pH 3.28), very cloudy and colored (turbidity of 1019 NTU). It has a dry matter content of 3.771% ± 0.013% reflecting the 70% dominance of water in the weight of the fruit and the presence of dissolved organic matter in its juice. Energy nutrients (sugars, amino acids), carotenoids, coumarins, tannins, flavonoids, terpenes and sterols have been highlighted as nutrients with therapeutic potential commonly called phytonutrients of this fruit. The juice presented a dominance in polyphenols (134.8500 ± 0.0023 mg gallic acid/100 g) than in carotenoids (5.100 ± 0.010 mg carotene/100 g), high levels of mineral macroelements (calcium: 3570.00 ± 2.05 mg and potassium: 4576.00 ± 9.49 mg) and trace elements (copper: 11.13 ± 0.10 mg, iron: 3.02 ± 0.03 mg and zinc: 2.57 ± 0.08 mg). These compounds exhibited good antioxidant activity. The presence of these nutrients and phytonutrients in these fruits is interesting for the proper functioning of certain organs and the prevention of certain diseases. This fruit is therefore an energizing and functional food that can compete with conventional fruits whose juices are marketed.展开更多
Three novel acidic polysaccharide fractions(OFPP-1,OFPP-2,OFPP-3)with different m olecular weights(803.7,555.1 and 414.5 k Da)were isolated from the peeled Opuntia dillenii Haw.fruits by alkali-extraction,graded alcoh...Three novel acidic polysaccharide fractions(OFPP-1,OFPP-2,OFPP-3)with different m olecular weights(803.7,555.1 and 414.5 k Da)were isolated from the peeled Opuntia dillenii Haw.fruits by alkali-extraction,graded alcohol precipitation and column chromatography.Structural analysis indicated that OFPPs were pectic polysaccharides consisting of rhamnose,arabinose and galactose residues.The backbone of OFPP-1 consisted of a repeating unit→6-α-D-Galp A-(1→2)-α-L-Rhap-(1→with T-α-D-Galp A-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→,T-β-D-Xylp-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→or T-α-D-Galp A-(1→3)-α-L-Araf-(1→as the side chains.The backbone of OFPP-2 consisted of a disaccharide repeating unit→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→with T-β-L-Araf-(1→as the branches substituted at the O-4 position of→2,4)-α-LRhap-(1→.Whereas the backbone of OFPP-3 was→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-β-L-Araf-(1→or→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→,which was branched at the O-4 position of→2,4)-α-L-Rhap-(1→.Moreover,these three polysaccharide fractions could protect Huh-7 cells against H2O2-induced oxidative stress to different extents by decreasing the MDA content and increasing the SOD,CAT,GSH-Px activities and the GSH level in the Huh-7 cells.These results suggest that OFPPs have the potential to be used as natural antioxidants.展开更多
Fruit infections have an impact on both the yield and the quality of the crop.As a result,an automated recognition system for fruit leaf diseases is important.In artificial intelligence(AI)applications,especially in a...Fruit infections have an impact on both the yield and the quality of the crop.As a result,an automated recognition system for fruit leaf diseases is important.In artificial intelligence(AI)applications,especially in agriculture,deep learning shows promising disease detection and classification results.The recent AI-based techniques have a few challenges for fruit disease recognition,such as low-resolution images,small datasets for learning models,and irrelevant feature extraction.This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization.Three fruit types have been employed in this work for the validation process,such as apple,grape,and Citrus.In the first step,a noisy dataset is prepared by employing the original images to learn the designed framework better.The EfficientNet-B0 deep model is fine-tuned on the next step and trained separately on the original and noisy data.After that,features are fused using a serial concatenation approach that is later optimized in the next step using an improved Path Finder Algorithm(PFA).This algorithm aims to select the best features based on the fitness score and ignore redundant information.The selected features are finally classified using machine learning classifiers such as Medium Neural Network,Wide Neural Network,and Support Vector Machine.The experimental process was conducted on each fruit dataset separately and obtained an accuracy of 100%,99.7%,99.7%,and 93.4%for apple,grape,Citrus fruit,and citrus plant leaves,respectively.A detailed analysis is conducted and also compared with the recent techniques,and the proposed framework shows improved accuracy.展开更多
Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.T...Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.展开更多
The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that...The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits.展开更多
The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chai...The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.展开更多
A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were deve...A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.展开更多
In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water ...In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water contents, thus, naturally vulnerable to rapid food spoilage. Food preservation and processing play a vital role in the inhibition of food pathogens in fruits and vegetables that are prevalent in Malaysia. Lactic acid fermentation is generally a local-based bioprocess, among the oldest form and well-known for food-processing techniques among indigenous people there. The long shelf life of fermented vegetables and fruits improves their nutritional values and antioxidant potentials. Fermented leaves and vegetables can be utilized as a potential source of probiotics as they are host for several lactic acid bacteria such as Lactobacillus confusus, Weissella paramesenteroides, Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus paracasei, Lactobacillus pentosus, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides. These strains may be more viable in metabolic systems whereby they can contribute to a substantial increase in essential biologically active element than industrial starter cultures. This review is aimed to address some essential fermented fruits and vegetables in Malaysia and their remarkable reputations as a potential sources of natural probiotics.展开更多
Cornelian cherry is used in the food and pharmaceutical industry as an ornament, in traditional medicine, and in the manufacture of household items. It is widely used in medicine for the prevention and treatment...Cornelian cherry is used in the food and pharmaceutical industry as an ornament, in traditional medicine, and in the manufacture of household items. It is widely used in medicine for the prevention and treatment of many diseases. Therefore, it is important to research the chemical composition of these species. In the article, based on our research, the analysis of the quantitative calculation of flavonoids and amino acids of the fruits of the “Elegant” and “Svetlyachok” cherry varieties was carried out. It was found that the amount of amino acids in the fruits of Cornus mas L., introduced in Uzbekistan, is higher in the variety “Svetlyachok” 2.643235 mg/g. In “Elegant” variety it was 1.794235 mg/g. The amount of 4 different flavonoids in the fruit was also determined. It has been established that the Elegant variety has a high concentration of lutein and rutin, and the svetlyachok has a high concentration of apigenin and quercetin.展开更多
The present work deals with the study of the thermal performances of a convective dryer for fruits and vegetables. This dryer, operating with energy generated from the combustion of biomass in a boiler connected to a ...The present work deals with the study of the thermal performances of a convective dryer for fruits and vegetables. This dryer, operating with energy generated from the combustion of biomass in a boiler connected to a water/air heat exchanger could be a solution to the problematic of energy related to drying. An experimental and theoretical study is carried out on the temperature profile inside the dryer. For this purpose, 10.3 kg of tomatoes were dried on the experimental setup. The operation lasted about 16 hours and reduced the moisture content from 93.8% to 12% in wet basis. The overall thermal efficiency of the convective dryer during the trial is 10.76%. For the theoretical study, the dryer components (boiler, water/air exchanger and drying chamber) are first modeled individually;the different sub-programs are then coupled to form the convective dryer program. The method of global heat balances combined with the one called “ε-NUT” is used. The set of equations is discretized using the implicit method of finite differences, then solved with the Gauss algorithm in Fortran 90. The theoretical results obtained are in good agreement with those measured.展开更多
A few studies have highlighted the degradation of shea tree fruits mainly due to insects in Burkina Faso. The insects associated with these non-timber forest products are still poorly known, hence the interest of this...A few studies have highlighted the degradation of shea tree fruits mainly due to insects in Burkina Faso. The insects associated with these non-timber forest products are still poorly known, hence the interest of this study. The objective of the study is to make a qualitative inventory of the biodiversity of insect pests of shea fruits during the ripening period in two different ecosystems. It was carried out in 2021 in three locations of the Ziro province. 30 shea fruit trees distributed in 9 sites listed in agrosystems and protected areas were selected for monitoring and collecting insects infested with the fruits. The inventory identified 25 species in 13 families clustered in 5 orders. The order of Diptera, composed of 6 families with 15 species recorded, is the most dominant order in this diversity. Among the different families, 3 of them, Calliphoridae, Tephritidae and Muscidae, present at least 3 species each. 7 species are mainly associated with fruit damage with a predominance of Ceratitis silvestrii Bezzi (Diptera: Tephritidae). 91.33% of the emergences from infested fruits and 43.41% of the individuals trapped belong to this species. C. silvestrii, which presents a homogeneity in its distribution between locations and ecosystems, is therefore the main pest species of shea fruits in production in this zone. The results suggest the need to determine the economic importance of Tephritidae infesting shea fruits.展开更多
Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economica...Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economically important in eliminating poverty and protecting ecology in the Yangtze River Three Gorges Reservoir.However,rain-induced cracking(rain-cracking,literally skin cracking caused by rain)is a limitation to‘Wushancuili'fruit production and causes severe losses.This study reported a high-quality‘Wushancuili'genome assembly consisting of a 302.17-Mb sequence with eight pseudo-chromosomes and a contig N50 of 23.59 Mb through the combination of Illumina sequencing,Pacific Biosciences HiFiⅢsequencing,and high-throughput chromosome conformation capture technology.A total of 25109 protein-coding genes are predicted and 54.17%of the genome is composed of repetitive sequences.‘Wushancuili'underwent a remarkable orthoselection during evolution.Gene identification revealed that loss-of-function in four core MYB10 genes results in the anthocyanin deficiency and absence of red color,revealing the green coloration due to the residual high chlorophyll in fruit skin.Besides,the occurrence of cracking is assumed to be closely associated with cell wall modification and frequently rain-induced pathogen enrichment through transcriptomic analysis.The loss of MYB10 genes might render fruit more susceptible to pathogen-mediated cracking by weakening the epidermal strength and reactive oxygen species(ROS)scavenging.Our findings provided fundamental knowledge regarding fruit coloration and rain-cracking and will facilitate genetic improvement and cultivation management in Chinese plums.展开更多
The flesh color of pummelo(Citrus maxima)fruits is highly diverse and largely depends on the level of carotenoids,which are beneficial to human health.It is vital to investigate the regulatory network of carotenoid bi...The flesh color of pummelo(Citrus maxima)fruits is highly diverse and largely depends on the level of carotenoids,which are beneficial to human health.It is vital to investigate the regulatory network of carotenoid biosynthesis to improve the carotenoid content in pummelo.However,the molecular mechanism underlying carotenoid accumulation in pummelo is not fully understood.In this study,we identified a novel histone methyltransferase gene,CgSDG40,involved in carotenoid regulation by analyzing the flesh transcriptome of typical white-fleshed pummelo,red-fleshed pummelo and extreme-colored F1 hybrids from a segregated pummelo population.Expression of CgSDG40 corresponded to flesh color change and was highly coexpressed with CgPSY1.Interestingly,CgSDG40 and CgPSY1 are located physically adjacent to each other on the chromosome in opposite directions,sharing a partially overlapping promoter region.Subcellular localization analysis indicated that CgSDG40 localizes to the nucleus.Overexpression of CgSDG40 significantly increased the total carotenoid content in citrus calli relative to that in wild type.In addition,expression of CgPSY1 was significantly activated in overexpression lines relative to wild type.Taken together,our findings reveal a novel histone methyltransferase regulator,CgSDG40,involved in the regulation of carotenoid biosynthesis in citrus and provide new strategies for molecular design breeding and genetic improvement of fruit color and nutritional quality.展开更多
The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and...The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and the seed of the fruit of Dacryodes edulis at taste maturity, which were selected for their nutritional quality and its appreciation throughout the Gulf of Guinea area, which is very popular because of its large size, texture and special taste. The evaluation of total carbohydrates, total lipids and soluble proteins in the epicarp, mesocarp and seed of the fruit at taste maturity was made from spectrophotometer measurements. The overall analysis of the results of the present study shows that total carbohydrates, total lipids and proteins accumulate more in the seed with respectively 251.33 ± 1.15 mg/g DM;9.92 ± 0.201 mg/g DM and 55.075 ± 0.024 mg/g DM. Likewise, the results indicate low concentrations of total carbohydrates and total lipids in the epicarp with respectively 245 ± 1 mg/g DM and 4.77 ± 0.047 mg/g DM, on the other hand, it is the mesocarp which presents the lowest content of soluble proteins: 28.075 ± 3.231 mg/g DM. This variation could be linked to the nature of the compartment, more particularly to the storage location. This comparative study could lead to the valorization of the seed of the fruit of Dacryodes edulis for its richness in metabolites and arouse significant interest in nutrition.展开更多
Quality and yield are the primary concerns in kiwifruit breeding,but research on the genetic mechanisms of fruit size,shape,and ascorbic acid(ASA)content is currently very limited,which restricts the development of ki...Quality and yield are the primary concerns in kiwifruit breeding,but research on the genetic mechanisms of fruit size,shape,and ascorbic acid(ASA)content is currently very limited,which restricts the development of kiwifruit molecular breeding.In this study,we obtained a total of 8.88 million highly reliable single nucleotide polymorphism(SNP)markers from 140 individuals from the natural hybrid offspring of Actinidia eriantha cv.‘White’using whole genome resequencing technology.A genome-wide association study was conducted on eight key agronomic traits,including single fruit weight,fruit shape,ASA content,and the number of inflorescences per branch.A total of 59 genetic loci containing potential functional genes were located,and candidate genes related to single fruit weight,fruit length,ASA content,number of inflorescences per branch and other traits were identified within the candidate interval,such as AeWUSCHEL,AeCDK1(cell cycle dependent kinase),AeAO1(ascorbic oxidase)and AeCO1(CONSTANS-like 4).After constructing an RNAi vector for AeAO1 and injecting it into the fruit of cv.‘Midao 31’to interfere with the expression of the AeAO1 gene,the results showed that the activity of ascorbic oxidase in the fruit of‘Midao 31’significantly decreased,while the content of ASA significantly increased.This study provides valuable insights into the genetic basis of variation in A.eriantha fruit traits,which may benefit molecular marker-assisted breeding efforts.展开更多
Enteric viral pathogens are responsible for numerous epidemics associated with the consumption of fresh fruit and vegetable, whether raw or minimally processed. The aim of the present study was to assess agricultural ...Enteric viral pathogens are responsible for numerous epidemics associated with the consumption of fresh fruit and vegetable, whether raw or minimally processed. The aim of the present study was to assess agricultural practices and the presence of adenovirus (AdV) in fruits and vegetables, manure and irrigation wastewater sampled in the urban and peri-urban perimeters of Ouagadougou. A total of 286 samples including 30 lettuces, 42 tomatoes, 30 carrots, 30 strawberries, 74 manures and 80 wastewater samples were collected from four market garden sites in and around Ouagadougou. Nested PCR was performed with specific primers to detect adenoviruses (AdVs). A face-to-face survey was carried out using a questionnaire on market garden production practices. Overall, adenoviruses prevalence was 5.9% [IC95, 3.2% - 8.7%] in all samples analyzed. It was specifically 7.14% (3/42) from tomatoes, 6.7% (2/30) from lettuces, 20% (6/30) on strawberries and 7.5% (6/80) in irrigation water. The survey showed that irrigation water came from untreated sources (dam, well, canal) and then 52% of farms used untreated manure. No farms have implemented measures to limit access by domestic and wild animals. This work shows the presence of human adenoviruses in surface irrigation water and fresh produce, which is of concern when fresh produce is consumed raw. To reduce the public health risks associated with consuming these foods, it is essential to follow good hygiene and cultivation practices.展开更多
Plant polyploidy often occurs in conjunction with higher yield and superior quality.Therefore,obtaining polyploid germplasms is a significant part of breeding.The oil-tea Camellia tree is an important native woody pla...Plant polyploidy often occurs in conjunction with higher yield and superior quality.Therefore,obtaining polyploid germplasms is a significant part of breeding.The oil-tea Camellia tree is an important native woody plant that produces high-quality edible oil and includes many species of Camellia with different ploidies.However,whether higher ploidy levels in oil-tea Camellia trees are related to better traits remains unclear.In this study,the ploidy levels of 30 different oil-tea Camellia strains in three different species in the Sect.Paracamellia were determined by flow cytometry and chromosome preparation,and the phenotypic characteristics and fatty acid compositions of the fruits were examined by field observations and laboratory analyses.The correlations between the ploidy level of oil-tea Camellia and the main traits of the fruit were investigated.Our results showed that 10 Camellia lanceoleosa strains were diploid,10 Camellia meiocarpa strains were tetraploid and 10 Camellia oleifera strains were hexaploid.Hexaploid C.oleifera had larger fruit size and weight,more seeds per fruit,greater seed weight per fruit,higher oil content and greater yield per crown width than tetraploid C.meiocarpa and diploid C.lanceoleosa,but their fruit peel thickness and fresh seed rate were significantly lower,and these traits were significantly correlated with ploidy level.In addition,in terms of fatty acid composition,hexaploid C.oleifera had a higher oleic acid content than tetraploid C.meiocarpa and diploid C.lanceoleosa,but their linoleic acid,linolenic acid and arachidonic acid contents were lower.The contents of palmitic acid,stearic acid and total unsaturated fatty acids were not significantly correlated with ploidy level.In conclusion,certain correlations exist between the main characteristics of oil-tea Camellia fruit and the ploidy level,and increasing the ploidy level led to an increase in fruit yield with no effect on oil composition.The discovery of variations in the main characteristics of oil-tea Camellia fruit with different ploidies will facilitate germplasm innovation and lay a foundation for ploidy breeding and mechanistic research on fruit traits.展开更多
Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic aci...Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic acid(SA),a well-known phytohormone,can delay fruit senescence and improve shelf life.However,the mechanism by which SA regulates CONSTANS-LIKE genes(COLs)during fruit senescence and the role of COL genes in mediating fruit senescence in sand pear are poorly understood.In this study,22 COL genes were identified in sand pear,including four COLs(Pp COL8,Pp COL9a,Pp COL9b,and Pp COL14)identified via transcriptome analysis and 18 COLs through genome-wide analysis.These COL genes were divided into three subgroups according to the structural domains of the COL protein.Pp COL8,with two B-box motifs and one CCT domain,belonged to the first subgroup.In contrast,the other three Pp COLs,Pp COL9a,Pp COL9b,and Pp COL14,with similar conserved protein domains and gene structures,were assigned to the third subgroup.The four COLs showed different expression patterns in pear tissues and were preferentially expressed at the early stage of fruit development.Moreover,the expression of Pp COL8 was inhibited by exogenous SA treatment,while SA up-regulated the expression of Pp COL9a and Pp COL9b.Interestingly,Pp COL8 interacts with Pp MADS,a MADS-box protein preferentially expressed in fruit,and SA up-regulated its expression.While the production of ethylene and the content of malondialdehyde(MDA)were increased in Pp COL8-overexpression sand pear fruit,the antioxidant enzyme(POD and SOD)activity and the expression of Pp POD1 and Pp SOD1 in the sand pear fruits were down-regulated,which showed that Pp COL8 promoted sand pear fruit senescence.In contrast,the corresponding changes were the opposite in Pp MADS-overexpression sand pear fruits,suggesting that Pp MADS delayed sand pear fruit senescence.The co-transformation of Pp COL8 and Pp MADS also delayed sand pear fruit senescence.The results of this study revealed that Pp COL8 can play a key role in pear fruit senescence by interacting with Pp MADS through the SA signaling pathway.展开更多
The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we d...The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we de novo assembled and annotated the genomes of the maternal(PsbM)and paternal(PsbF)lines of the hybrid‘Yuluxiang'pear and constructed the pear pangenome of 1.15 Gb by combining these two genomes with five previously published pear genomes representing cultivated and wild germplasm.Using the constructed pangenome,we identified 21224 gene PAVs(Presence-absence variation)and 1158812 SNPs(Single Nucleotide Polymorphism)in the non-reference genome that were absent in the PsbM reference genome.Compared with SNP markers,PAV-based analysis provides additional insights into the pear population structure.In addition,some genes associated with pear fruit quality traits have differential occurrence frequencies and differential gene expression between Asian and European populations.Moreover,our analysis of the pear pangenome revealed a mutated SNP and an insertion in the promoter region of the gene PsbMGH3.1 potentially enhance sepal shedding in‘Xuehuali'which is vital for pear quality.PsbMGH3.1 may play a role in the IAA pathway,contributing to a distinct low-auxin phenotype observed in plants by heterologously overexpressing this gene.This research helps capture the genetic diversity of pear populations and provides genomic resources for accelerating breeding.展开更多
Pectinex XXL,a commercially prepared pectinase,was investigated for its potential application in the fruit juice industry.Polygalacturonic acid was used as the substrate for determining the enzymatic properties of Pec...Pectinex XXL,a commercially prepared pectinase,was investigated for its potential application in the fruit juice industry.Polygalacturonic acid was used as the substrate for determining the enzymatic properties of Pectinex XXL using the DNS method.According to the results,the optimal pH for Pectinex XXL activity was 4.5,and the enzyme was stable in the pH range of 3.0~4.5.The optimal pH and pH stability range are consistent with those of some tropical and subtropical fruits.The optimal temperature for Pectinex XXL activity was 60℃,and the enzyme remained stable after one hour in a water bath set at 40℃.Additionally,the enzymatic activity was not inhibited in the presence of 1 mmol/L of Na^(+),Mg^(2+),Ba^(2+),Co^(2+),Zn^(2+),and Fe^(2+),whereas it was slightly inhibited in the presence of 2 mmol/L of K^(+)and Fe^(2+)and partially inhibited in the presence of 1 and 2 mmol/L of Ca^(2+)and Mn^(2+),demonstrating its good stability in acids and excellent thermal catalytic performance.Based on the above experimental results,depectinization experiments were performed on plantain and cherry tomato juices using different amounts of Pectinex XXL.After one hour reaction with 16 U/mL of the enzyme,the yields of the plantain and cherry tomato juices were substantially increased by 119.03%and 15.97%,respectively,while their light transmittance was remarkably enhanced by 37.65%and 12.35%,respectively.Furthermore,the enzyme reduced the viscosity of the plantain and cherry tomato juices by 88.29%and 29.50%,respectively.The juice production experiments confirmed that this enzyme can significantly improve the yield and light transmittance of plantain juice,while effectively reducing its viscosity.These findings indicate the potential of Pectinex XXL in the industrial production of plantain juice.展开更多
文摘The red fruits of Pseudospondias microcarpa (A. Rich) Engl. are widely consumed by the populations of northern Congo for their sweet and tangy flavor as well as for their characteristic smell. The objective of this study was to show the food potential of the fruits of this plant for their valorization. Organic solvent extracts were prepared and subjected to phytochemical screening to determine the nutrients and phytonutrients of this fruit. Raw juice was extracted by trituration without adding water and subjected to physicochemical and biochemical analyses in order to determine its quality and its antiradical activity. The raw juice obtained is moderately acidic (pH 3.28), very cloudy and colored (turbidity of 1019 NTU). It has a dry matter content of 3.771% ± 0.013% reflecting the 70% dominance of water in the weight of the fruit and the presence of dissolved organic matter in its juice. Energy nutrients (sugars, amino acids), carotenoids, coumarins, tannins, flavonoids, terpenes and sterols have been highlighted as nutrients with therapeutic potential commonly called phytonutrients of this fruit. The juice presented a dominance in polyphenols (134.8500 ± 0.0023 mg gallic acid/100 g) than in carotenoids (5.100 ± 0.010 mg carotene/100 g), high levels of mineral macroelements (calcium: 3570.00 ± 2.05 mg and potassium: 4576.00 ± 9.49 mg) and trace elements (copper: 11.13 ± 0.10 mg, iron: 3.02 ± 0.03 mg and zinc: 2.57 ± 0.08 mg). These compounds exhibited good antioxidant activity. The presence of these nutrients and phytonutrients in these fruits is interesting for the proper functioning of certain organs and the prevention of certain diseases. This fruit is therefore an energizing and functional food that can compete with conventional fruits whose juices are marketed.
基金supported by the National Natural Science Foundation of China(No.31972977)。
文摘Three novel acidic polysaccharide fractions(OFPP-1,OFPP-2,OFPP-3)with different m olecular weights(803.7,555.1 and 414.5 k Da)were isolated from the peeled Opuntia dillenii Haw.fruits by alkali-extraction,graded alcohol precipitation and column chromatography.Structural analysis indicated that OFPPs were pectic polysaccharides consisting of rhamnose,arabinose and galactose residues.The backbone of OFPP-1 consisted of a repeating unit→6-α-D-Galp A-(1→2)-α-L-Rhap-(1→with T-α-D-Galp A-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→,T-β-D-Xylp-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→or T-α-D-Galp A-(1→3)-α-L-Araf-(1→as the side chains.The backbone of OFPP-2 consisted of a disaccharide repeating unit→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→with T-β-L-Araf-(1→as the branches substituted at the O-4 position of→2,4)-α-LRhap-(1→.Whereas the backbone of OFPP-3 was→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-β-L-Araf-(1→or→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→,which was branched at the O-4 position of→2,4)-α-L-Rhap-(1→.Moreover,these three polysaccharide fractions could protect Huh-7 cells against H2O2-induced oxidative stress to different extents by decreasing the MDA content and increasing the SOD,CAT,GSH-Px activities and the GSH level in the Huh-7 cells.These results suggest that OFPPs have the potential to be used as natural antioxidants.
文摘Fruit infections have an impact on both the yield and the quality of the crop.As a result,an automated recognition system for fruit leaf diseases is important.In artificial intelligence(AI)applications,especially in agriculture,deep learning shows promising disease detection and classification results.The recent AI-based techniques have a few challenges for fruit disease recognition,such as low-resolution images,small datasets for learning models,and irrelevant feature extraction.This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization.Three fruit types have been employed in this work for the validation process,such as apple,grape,and Citrus.In the first step,a noisy dataset is prepared by employing the original images to learn the designed framework better.The EfficientNet-B0 deep model is fine-tuned on the next step and trained separately on the original and noisy data.After that,features are fused using a serial concatenation approach that is later optimized in the next step using an improved Path Finder Algorithm(PFA).This algorithm aims to select the best features based on the fitness score and ignore redundant information.The selected features are finally classified using machine learning classifiers such as Medium Neural Network,Wide Neural Network,and Support Vector Machine.The experimental process was conducted on each fruit dataset separately and obtained an accuracy of 100%,99.7%,99.7%,and 93.4%for apple,grape,Citrus fruit,and citrus plant leaves,respectively.A detailed analysis is conducted and also compared with the recent techniques,and the proposed framework shows improved accuracy.
基金Supported by Special Soft Science Research Project for Hubei Province Science and Technology Innovation Talents and Services(2022EDA060).
文摘Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.
文摘The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits.
基金National Natural Science Foundation of China(32301718)Chinese Academy of Agricultural Sciences under the Special Institute-level Coordination Project for Basic Research Operating Costs(S202328)。
文摘The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.
基金supported by National Key Research and Development Program of China(2018YFC1603400)Special Technical Support Project of State Administration for Market Regulation(2019YJ009).
文摘A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.
基金Universiti Malaysia Sarawak for the support of this research。
文摘In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water contents, thus, naturally vulnerable to rapid food spoilage. Food preservation and processing play a vital role in the inhibition of food pathogens in fruits and vegetables that are prevalent in Malaysia. Lactic acid fermentation is generally a local-based bioprocess, among the oldest form and well-known for food-processing techniques among indigenous people there. The long shelf life of fermented vegetables and fruits improves their nutritional values and antioxidant potentials. Fermented leaves and vegetables can be utilized as a potential source of probiotics as they are host for several lactic acid bacteria such as Lactobacillus confusus, Weissella paramesenteroides, Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus paracasei, Lactobacillus pentosus, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides. These strains may be more viable in metabolic systems whereby they can contribute to a substantial increase in essential biologically active element than industrial starter cultures. This review is aimed to address some essential fermented fruits and vegetables in Malaysia and their remarkable reputations as a potential sources of natural probiotics.
文摘Cornelian cherry is used in the food and pharmaceutical industry as an ornament, in traditional medicine, and in the manufacture of household items. It is widely used in medicine for the prevention and treatment of many diseases. Therefore, it is important to research the chemical composition of these species. In the article, based on our research, the analysis of the quantitative calculation of flavonoids and amino acids of the fruits of the “Elegant” and “Svetlyachok” cherry varieties was carried out. It was found that the amount of amino acids in the fruits of Cornus mas L., introduced in Uzbekistan, is higher in the variety “Svetlyachok” 2.643235 mg/g. In “Elegant” variety it was 1.794235 mg/g. The amount of 4 different flavonoids in the fruit was also determined. It has been established that the Elegant variety has a high concentration of lutein and rutin, and the svetlyachok has a high concentration of apigenin and quercetin.
文摘The present work deals with the study of the thermal performances of a convective dryer for fruits and vegetables. This dryer, operating with energy generated from the combustion of biomass in a boiler connected to a water/air heat exchanger could be a solution to the problematic of energy related to drying. An experimental and theoretical study is carried out on the temperature profile inside the dryer. For this purpose, 10.3 kg of tomatoes were dried on the experimental setup. The operation lasted about 16 hours and reduced the moisture content from 93.8% to 12% in wet basis. The overall thermal efficiency of the convective dryer during the trial is 10.76%. For the theoretical study, the dryer components (boiler, water/air exchanger and drying chamber) are first modeled individually;the different sub-programs are then coupled to form the convective dryer program. The method of global heat balances combined with the one called “ε-NUT” is used. The set of equations is discretized using the implicit method of finite differences, then solved with the Gauss algorithm in Fortran 90. The theoretical results obtained are in good agreement with those measured.
文摘A few studies have highlighted the degradation of shea tree fruits mainly due to insects in Burkina Faso. The insects associated with these non-timber forest products are still poorly known, hence the interest of this study. The objective of the study is to make a qualitative inventory of the biodiversity of insect pests of shea fruits during the ripening period in two different ecosystems. It was carried out in 2021 in three locations of the Ziro province. 30 shea fruit trees distributed in 9 sites listed in agrosystems and protected areas were selected for monitoring and collecting insects infested with the fruits. The inventory identified 25 species in 13 families clustered in 5 orders. The order of Diptera, composed of 6 families with 15 species recorded, is the most dominant order in this diversity. Among the different families, 3 of them, Calliphoridae, Tephritidae and Muscidae, present at least 3 species each. 7 species are mainly associated with fruit damage with a predominance of Ceratitis silvestrii Bezzi (Diptera: Tephritidae). 91.33% of the emergences from infested fruits and 43.41% of the individuals trapped belong to this species. C. silvestrii, which presents a homogeneity in its distribution between locations and ecosystems, is therefore the main pest species of shea fruits in production in this zone. The results suggest the need to determine the economic importance of Tephritidae infesting shea fruits.
基金financially supported by the Construction Program for Chongqing's Distinctive“Wushancuili”Industry(Grant No.4322200370)Strategic Cooperation Project of Chongqing Municipality and Chinese Academy of Agricultural Sciences(Grant No.4322300181)Fundamental Research Funds for Central Universities-Talent induction project(Grant Nos.SWU-KR22001,SWU-KQ22070)。
文摘Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economically important in eliminating poverty and protecting ecology in the Yangtze River Three Gorges Reservoir.However,rain-induced cracking(rain-cracking,literally skin cracking caused by rain)is a limitation to‘Wushancuili'fruit production and causes severe losses.This study reported a high-quality‘Wushancuili'genome assembly consisting of a 302.17-Mb sequence with eight pseudo-chromosomes and a contig N50 of 23.59 Mb through the combination of Illumina sequencing,Pacific Biosciences HiFiⅢsequencing,and high-throughput chromosome conformation capture technology.A total of 25109 protein-coding genes are predicted and 54.17%of the genome is composed of repetitive sequences.‘Wushancuili'underwent a remarkable orthoselection during evolution.Gene identification revealed that loss-of-function in four core MYB10 genes results in the anthocyanin deficiency and absence of red color,revealing the green coloration due to the residual high chlorophyll in fruit skin.Besides,the occurrence of cracking is assumed to be closely associated with cell wall modification and frequently rain-induced pathogen enrichment through transcriptomic analysis.The loss of MYB10 genes might render fruit more susceptible to pathogen-mediated cracking by weakening the epidermal strength and reactive oxygen species(ROS)scavenging.Our findings provided fundamental knowledge regarding fruit coloration and rain-cracking and will facilitate genetic improvement and cultivation management in Chinese plums.
基金supported by the Major Special Projects and Key R&D Projects in Yunnan Province,China(202102AE090054)the National Natural Science Foundation of China(31925034)+1 种基金the Foundation of Hubei Hongshan Laboratory granted to Dr.Qiang Xu,China(2021hszd016)the Key Project of Hubei Provincial Natural Science Foundation,China(2021CFA017)。
文摘The flesh color of pummelo(Citrus maxima)fruits is highly diverse and largely depends on the level of carotenoids,which are beneficial to human health.It is vital to investigate the regulatory network of carotenoid biosynthesis to improve the carotenoid content in pummelo.However,the molecular mechanism underlying carotenoid accumulation in pummelo is not fully understood.In this study,we identified a novel histone methyltransferase gene,CgSDG40,involved in carotenoid regulation by analyzing the flesh transcriptome of typical white-fleshed pummelo,red-fleshed pummelo and extreme-colored F1 hybrids from a segregated pummelo population.Expression of CgSDG40 corresponded to flesh color change and was highly coexpressed with CgPSY1.Interestingly,CgSDG40 and CgPSY1 are located physically adjacent to each other on the chromosome in opposite directions,sharing a partially overlapping promoter region.Subcellular localization analysis indicated that CgSDG40 localizes to the nucleus.Overexpression of CgSDG40 significantly increased the total carotenoid content in citrus calli relative to that in wild type.In addition,expression of CgPSY1 was significantly activated in overexpression lines relative to wild type.Taken together,our findings reveal a novel histone methyltransferase regulator,CgSDG40,involved in the regulation of carotenoid biosynthesis in citrus and provide new strategies for molecular design breeding and genetic improvement of fruit color and nutritional quality.
文摘The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and the seed of the fruit of Dacryodes edulis at taste maturity, which were selected for their nutritional quality and its appreciation throughout the Gulf of Guinea area, which is very popular because of its large size, texture and special taste. The evaluation of total carbohydrates, total lipids and soluble proteins in the epicarp, mesocarp and seed of the fruit at taste maturity was made from spectrophotometer measurements. The overall analysis of the results of the present study shows that total carbohydrates, total lipids and proteins accumulate more in the seed with respectively 251.33 ± 1.15 mg/g DM;9.92 ± 0.201 mg/g DM and 55.075 ± 0.024 mg/g DM. Likewise, the results indicate low concentrations of total carbohydrates and total lipids in the epicarp with respectively 245 ± 1 mg/g DM and 4.77 ± 0.047 mg/g DM, on the other hand, it is the mesocarp which presents the lowest content of soluble proteins: 28.075 ± 3.231 mg/g DM. This variation could be linked to the nature of the compartment, more particularly to the storage location. This comparative study could lead to the valorization of the seed of the fruit of Dacryodes edulis for its richness in metabolites and arouse significant interest in nutrition.
基金supported by the National Natural Science Foundation of China(U23A20204,31972474 and 31471157).
文摘Quality and yield are the primary concerns in kiwifruit breeding,but research on the genetic mechanisms of fruit size,shape,and ascorbic acid(ASA)content is currently very limited,which restricts the development of kiwifruit molecular breeding.In this study,we obtained a total of 8.88 million highly reliable single nucleotide polymorphism(SNP)markers from 140 individuals from the natural hybrid offspring of Actinidia eriantha cv.‘White’using whole genome resequencing technology.A genome-wide association study was conducted on eight key agronomic traits,including single fruit weight,fruit shape,ASA content,and the number of inflorescences per branch.A total of 59 genetic loci containing potential functional genes were located,and candidate genes related to single fruit weight,fruit length,ASA content,number of inflorescences per branch and other traits were identified within the candidate interval,such as AeWUSCHEL,AeCDK1(cell cycle dependent kinase),AeAO1(ascorbic oxidase)and AeCO1(CONSTANS-like 4).After constructing an RNAi vector for AeAO1 and injecting it into the fruit of cv.‘Midao 31’to interfere with the expression of the AeAO1 gene,the results showed that the activity of ascorbic oxidase in the fruit of‘Midao 31’significantly decreased,while the content of ASA significantly increased.This study provides valuable insights into the genetic basis of variation in A.eriantha fruit traits,which may benefit molecular marker-assisted breeding efforts.
文摘Enteric viral pathogens are responsible for numerous epidemics associated with the consumption of fresh fruit and vegetable, whether raw or minimally processed. The aim of the present study was to assess agricultural practices and the presence of adenovirus (AdV) in fruits and vegetables, manure and irrigation wastewater sampled in the urban and peri-urban perimeters of Ouagadougou. A total of 286 samples including 30 lettuces, 42 tomatoes, 30 carrots, 30 strawberries, 74 manures and 80 wastewater samples were collected from four market garden sites in and around Ouagadougou. Nested PCR was performed with specific primers to detect adenoviruses (AdVs). A face-to-face survey was carried out using a questionnaire on market garden production practices. Overall, adenoviruses prevalence was 5.9% [IC95, 3.2% - 8.7%] in all samples analyzed. It was specifically 7.14% (3/42) from tomatoes, 6.7% (2/30) from lettuces, 20% (6/30) on strawberries and 7.5% (6/80) in irrigation water. The survey showed that irrigation water came from untreated sources (dam, well, canal) and then 52% of farms used untreated manure. No farms have implemented measures to limit access by domestic and wild animals. This work shows the presence of human adenoviruses in surface irrigation water and fresh produce, which is of concern when fresh produce is consumed raw. To reduce the public health risks associated with consuming these foods, it is essential to follow good hygiene and cultivation practices.
基金supported by the Special Funds for Construction of Innovative Provinces in Hunan Province,China(2021NK1007)the Hunan Provincial Innovation Foundation for Postgraduate,China(CX20230779)the Scientific Innovation Fund for Post-graduates of Central South University of Forestry and Technology,China(2023CX01009)。
文摘Plant polyploidy often occurs in conjunction with higher yield and superior quality.Therefore,obtaining polyploid germplasms is a significant part of breeding.The oil-tea Camellia tree is an important native woody plant that produces high-quality edible oil and includes many species of Camellia with different ploidies.However,whether higher ploidy levels in oil-tea Camellia trees are related to better traits remains unclear.In this study,the ploidy levels of 30 different oil-tea Camellia strains in three different species in the Sect.Paracamellia were determined by flow cytometry and chromosome preparation,and the phenotypic characteristics and fatty acid compositions of the fruits were examined by field observations and laboratory analyses.The correlations between the ploidy level of oil-tea Camellia and the main traits of the fruit were investigated.Our results showed that 10 Camellia lanceoleosa strains were diploid,10 Camellia meiocarpa strains were tetraploid and 10 Camellia oleifera strains were hexaploid.Hexaploid C.oleifera had larger fruit size and weight,more seeds per fruit,greater seed weight per fruit,higher oil content and greater yield per crown width than tetraploid C.meiocarpa and diploid C.lanceoleosa,but their fruit peel thickness and fresh seed rate were significantly lower,and these traits were significantly correlated with ploidy level.In addition,in terms of fatty acid composition,hexaploid C.oleifera had a higher oleic acid content than tetraploid C.meiocarpa and diploid C.lanceoleosa,but their linoleic acid,linolenic acid and arachidonic acid contents were lower.The contents of palmitic acid,stearic acid and total unsaturated fatty acids were not significantly correlated with ploidy level.In conclusion,certain correlations exist between the main characteristics of oil-tea Camellia fruit and the ploidy level,and increasing the ploidy level led to an increase in fruit yield with no effect on oil composition.The discovery of variations in the main characteristics of oil-tea Camellia fruit with different ploidies will facilitate germplasm innovation and lay a foundation for ploidy breeding and mechanistic research on fruit traits.
基金supported by the National Natural Science Foundation of China(32272654)the Natural Science Foundation of Hebei Province China(C2023204016)+2 种基金the Hebei Province Introduced Overseas-Scholar Fund China(C20220361)the S&T Program of Hebei China(20326330D)the Hebei Province Outstanding Youth Fund China(2016,2019)。
文摘Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic acid(SA),a well-known phytohormone,can delay fruit senescence and improve shelf life.However,the mechanism by which SA regulates CONSTANS-LIKE genes(COLs)during fruit senescence and the role of COL genes in mediating fruit senescence in sand pear are poorly understood.In this study,22 COL genes were identified in sand pear,including four COLs(Pp COL8,Pp COL9a,Pp COL9b,and Pp COL14)identified via transcriptome analysis and 18 COLs through genome-wide analysis.These COL genes were divided into three subgroups according to the structural domains of the COL protein.Pp COL8,with two B-box motifs and one CCT domain,belonged to the first subgroup.In contrast,the other three Pp COLs,Pp COL9a,Pp COL9b,and Pp COL14,with similar conserved protein domains and gene structures,were assigned to the third subgroup.The four COLs showed different expression patterns in pear tissues and were preferentially expressed at the early stage of fruit development.Moreover,the expression of Pp COL8 was inhibited by exogenous SA treatment,while SA up-regulated the expression of Pp COL9a and Pp COL9b.Interestingly,Pp COL8 interacts with Pp MADS,a MADS-box protein preferentially expressed in fruit,and SA up-regulated its expression.While the production of ethylene and the content of malondialdehyde(MDA)were increased in Pp COL8-overexpression sand pear fruit,the antioxidant enzyme(POD and SOD)activity and the expression of Pp POD1 and Pp SOD1 in the sand pear fruits were down-regulated,which showed that Pp COL8 promoted sand pear fruit senescence.In contrast,the corresponding changes were the opposite in Pp MADS-overexpression sand pear fruits,suggesting that Pp MADS delayed sand pear fruit senescence.The co-transformation of Pp COL8 and Pp MADS also delayed sand pear fruit senescence.The results of this study revealed that Pp COL8 can play a key role in pear fruit senescence by interacting with Pp MADS through the SA signaling pathway.
基金supported by the National Natural Science Foundation of China(Grant No.32102364)the General Program of Shandong Natural Science Foundation(Grant No.ZR2022MC064)+3 种基金the Shanxi Province Postdoctoral Research Activity Fund(Grant No.K462101001)the Doctoral Research Initiation Fund of Shanxi Datong University(Grant No.2023-B-15)the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.2023CYJSTX07)the Shanxi Province Excellent Doctoral Work Award Project(Grant No.606-02010609)。
文摘The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we de novo assembled and annotated the genomes of the maternal(PsbM)and paternal(PsbF)lines of the hybrid‘Yuluxiang'pear and constructed the pear pangenome of 1.15 Gb by combining these two genomes with five previously published pear genomes representing cultivated and wild germplasm.Using the constructed pangenome,we identified 21224 gene PAVs(Presence-absence variation)and 1158812 SNPs(Single Nucleotide Polymorphism)in the non-reference genome that were absent in the PsbM reference genome.Compared with SNP markers,PAV-based analysis provides additional insights into the pear population structure.In addition,some genes associated with pear fruit quality traits have differential occurrence frequencies and differential gene expression between Asian and European populations.Moreover,our analysis of the pear pangenome revealed a mutated SNP and an insertion in the promoter region of the gene PsbMGH3.1 potentially enhance sepal shedding in‘Xuehuali'which is vital for pear quality.PsbMGH3.1 may play a role in the IAA pathway,contributing to a distinct low-auxin phenotype observed in plants by heterologously overexpressing this gene.This research helps capture the genetic diversity of pear populations and provides genomic resources for accelerating breeding.
文摘Pectinex XXL,a commercially prepared pectinase,was investigated for its potential application in the fruit juice industry.Polygalacturonic acid was used as the substrate for determining the enzymatic properties of Pectinex XXL using the DNS method.According to the results,the optimal pH for Pectinex XXL activity was 4.5,and the enzyme was stable in the pH range of 3.0~4.5.The optimal pH and pH stability range are consistent with those of some tropical and subtropical fruits.The optimal temperature for Pectinex XXL activity was 60℃,and the enzyme remained stable after one hour in a water bath set at 40℃.Additionally,the enzymatic activity was not inhibited in the presence of 1 mmol/L of Na^(+),Mg^(2+),Ba^(2+),Co^(2+),Zn^(2+),and Fe^(2+),whereas it was slightly inhibited in the presence of 2 mmol/L of K^(+)and Fe^(2+)and partially inhibited in the presence of 1 and 2 mmol/L of Ca^(2+)and Mn^(2+),demonstrating its good stability in acids and excellent thermal catalytic performance.Based on the above experimental results,depectinization experiments were performed on plantain and cherry tomato juices using different amounts of Pectinex XXL.After one hour reaction with 16 U/mL of the enzyme,the yields of the plantain and cherry tomato juices were substantially increased by 119.03%and 15.97%,respectively,while their light transmittance was remarkably enhanced by 37.65%and 12.35%,respectively.Furthermore,the enzyme reduced the viscosity of the plantain and cherry tomato juices by 88.29%and 29.50%,respectively.The juice production experiments confirmed that this enzyme can significantly improve the yield and light transmittance of plantain juice,while effectively reducing its viscosity.These findings indicate the potential of Pectinex XXL in the industrial production of plantain juice.