期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
No-Reference Quality Assessment of Enhanced Images
1
作者 Leida Li Wei Shen +3 位作者 Ke Gu Jinjian Wu Beijing Chen Jianying Zhang 《China Communications》 SCIE CSCD 2016年第9期121-130,共10页
Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remain... Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remains an open problem,which may hinder further development of enhancement techniques.In this paper,a no-reference quality metric for digitally enhanced images is proposed.Three kinds of features are extracted for characterizing the quality of enhanced images,including non-structural information,sharpness and naturalness.Specifically,a total of 42 perceptual features are extracted and used to train a support vector regression(SVR) model.Finally,the trained SVR model is used for predicting the quality of enhanced images.The performance of the proposed method is evaluated on several enhancement-related databases,including a new enhanced image database built by the authors.The experimental results demonstrate the efficiency and advantage of the proposed metric. 展开更多
关键词 image enhancement quality assessment no-reference perceptual feature SVR
下载PDF
No-Reference Image Quality Assessment Method Based on Visual Parameters
2
作者 Yu-Hong Liu Kai-Fu Yang Hong-Mei Yan 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第2期171-184,共14页
Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA m... Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA method based on the basic image visual parameters without using human scored image databases in learning. We demonstrated that these features comprised the most basic characteristics for constructing an image and influencing the visual quality of an image. In this paper, the definitions, computational method, and relationships among these visual metrics were described. We subsequently proposed a no-reference assessment function, which was referred to as a visual parameter measurement index (VPMI), based on the integration of these visual metrics to assess image quality. It is established that the maximum of VPMI corresponds to the best quality of the color image. We verified this method using the popular assessment database—image quality assessment database (LIVE), and the results indicated that the proposed method matched better with the subjective assessment of human vision. Compared with other image quality assessment models, it is highly competitive. VPMI has low computational complexity, which makes it promising to implement in real-time image assessment systems. 展开更多
关键词 BANDWIDTH human VISUAL system information entropy LUMINANCE no-reference image quality assessment (NR-IQA) VISUAL parameter measurement index (VPMI)
下载PDF
No-Reference Stereo Image Quality Assessment Based on Transfer Learning
3
作者 Lixiu Wu Song Wang Qingbing Sang 《Journal of New Media》 2022年第3期125-135,共11页
In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left v... In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left view or right view.In this paper,we transfer the 2D image quality evaluation model to the stereo image quality evaluation,and this method solves the first problem;use the method of principal component analysis is used to fuse the left and right views into an input image in order to solve the second problem.At the same time,the input image is preprocessed by phase congruency transformation,which further improves the performance of the algorithm.The structure of the deep convolution neural network consists of four convolution layers and three maximum pooling layers and two fully connected layers.The experimental results on LIVE3D image database show that the prediction quality score of the model is in good agreement with the subjective evaluation value. 展开更多
关键词 no-reference stereo image quality assessment convolution neural network transfer learning phase congruency transformation image fusion
下载PDF
No-reference blur assessment method based on gradient and saliency 被引量:2
4
作者 Jia Huizhen Lei Chucong +5 位作者 Wang Tonghan Li Tan Wu Jiasong Li Guang He Jianfeng Shu Huazhong 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期184-191,共8页
To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used... To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low. 展开更多
关键词 no-reference image quality assessment reblurring effect gradient similarity SALIENCY
下载PDF
Multi-Scale Blind Image Quality Predictor Based on Pyramidal Convolution 被引量:2
5
作者 Feng Yuan Xiao Shao 《Journal on Big Data》 2020年第4期167-176,共10页
Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer visi... Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer vision tasks,many IQA methods start to utilize the deep convolutional neural networks(CNN)for IQA task.In this paper,a CNN-based multi-scale blind image quality predictor is proposed to extract more effectivity multi-scale distortion features through the pyramidal convolution,which consists of two tasks:A distortion recognition task and a quality regression task.For the first task,image distortion type is obtained by the fully connected layer.For the second task,the image quality score is predicted during the distortion recognition progress.Experimental results on three famous IQA datasets show that the proposed method has better performance than the previous traditional algorithms for quality prediction and distortion recognition. 展开更多
关键词 no-reference image quality assessment(NR-IQA) convolutional neural network deep learning feature extraction image distortion recognition
下载PDF
Revolution CT低剂量扫描方案对腹主动脉钙化的定量诊断价值
6
作者 高娜 何花 +2 位作者 马嘉乐 刘欣然 王志军 《放射学实践》 CSCD 北大核心 2024年第9期1228-1232,共5页
目的:探讨Revolution CT低剂量扫描方案对腹主动脉钙化的定量诊断价值。方法:搜集2021年9月至2022年3月宁夏医科大学总医院行CT尿路造影(CTU)合并腹主动脉钙化的35例患者,平扫采用GSI扫描模式联合40%全新迭代算法(ASiR-V)(A组),排泄期... 目的:探讨Revolution CT低剂量扫描方案对腹主动脉钙化的定量诊断价值。方法:搜集2021年9月至2022年3月宁夏医科大学总医院行CT尿路造影(CTU)合并腹主动脉钙化的35例患者,平扫采用GSI扫描模式联合40%全新迭代算法(ASiR-V)(A组),排泄期采用常规平扫(FBP重建)(B组)。测量两组图像的腹主动脉钙化指数(AACI)、腹主动脉CT值、SD值及A组腹主动脉钙化能谱定量参数(钙化体积、平均钙化浓度),计算A、B两组钙化质量积分、信噪比(SNR)和对比噪声比(CNR);并由2位医生对两组图像质量进行主观评分。采用Mann-Whitney U检验比较两组的AACI差异,采用配对样本t检验比较两组腹主动脉CT值、SD值、SNR及CNR差异。采用Pearson相关分析法对A组腹主动脉钙化各定量参数与B组AACI进行相关性分析,并对两组的辐射剂量进行比较。结果:A组AACI(0.20±0.03)与B组AACI(0.18±0.03)比较差异无统计学意义(P>0.05);A组腹主动脉钙化体积、平均钙化浓度、钙化质量积分与B组AACI间均呈正相关(r值分别为0.926、0.513、0.877,P<0.05)。A组SNR、CNR与B组比较差异有统计学意义(P<0.05)。两组图像的主观评分差异有统计学意义(P<0.05);A组的有效辐射剂量较B组降低了29.3%,差异有统计学意义(P<0.05)。结论:Revolution CT可为腹主动脉钙化的评估提供多种定量指标,测量过程简便、省时,更适合常规临床应用,低剂量扫描方案可以降低辐射剂量并提升图像质量。 展开更多
关键词 腹主动脉钙化 体层摄影术 X线计算机 能谱ct 辐射剂量 图像质量评估
下载PDF
对用于肺部自适应放疗的合成CT影像质量的对比研究
7
作者 郑子龙 苏斌 +3 位作者 钱呈 魏环海 陈童 赵瑞峰 《中国医疗设备》 2024年第7期42-48,共7页
目的评估基于Velocity软件,不同锥形束CT(Cone Beam CT,CBCT)扫描模式下对应的合成CT(synthetic CT,sCT)的图像质量。方法通过设置CIRS肺运动模体常规的呼吸运动状态,对其进行4D-CT模拟定位。在平均密度投影CT即计划CT(planning CT,pCT... 目的评估基于Velocity软件,不同锥形束CT(Cone Beam CT,CBCT)扫描模式下对应的合成CT(synthetic CT,sCT)的图像质量。方法通过设置CIRS肺运动模体常规的呼吸运动状态,对其进行4D-CT模拟定位。在平均密度投影CT即计划CT(planning CT,pCT)上完成计划设计后,将其传至TrueBeam直线加速器,分别实现3D-CBCT和4D-CBCT的扫描和图像重建,再基于Velocity软件得到相应的sCT。结果sCT图像保留了基准pCT图像的精细结构,且二者图像轮廓之间有较强的相关性,所有Dice相似系数都超过0.85。通过直观对比可看出,相比对应的CBCT图像,sCT图像伪影明显减少。sCT3D/sCT4D图像中不同感兴趣区的CT值均明显更低,sCT的噪声更小。对sCT而言,sCT3D图像的CT值的平均百分差异为7.68%,sCT4D图像的CT值的平均百分差异为4.65%。相比3D-CBCT,基于4D-CBCT得到的sCT图像的CT值精度得到了改善。结论在固定呼吸状态下,基于Velocity得到的对应不同模式CBCT的sCT图像质量与基准pCT可以相比拟,与呼吸相关的图像引导在肺癌患者放疗时更有临床价值。 展开更多
关键词 图像引导放疗 四维ct 合成ct 图像质量评估 自适应放疗
下载PDF
Structured Computational Modeling of Human Visual System for No-reference Image Quality Assessment
8
作者 Wen-Han Zhu Wei Sun +2 位作者 Xiong-Kuo Min Guang-Tao Zhai Xiao-Kang Yang 《International Journal of Automation and computing》 EI CSCD 2021年第2期204-218,共15页
Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate eval... Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures. 展开更多
关键词 image quality assessment(IQA) no-reference(NR) structural computational modeling human visual system visual feature extraction
原文传递
A multimodal dense convolution network for blind image quality assessment
9
作者 Nandhini CHOCKALINGAM Brindha MURUGAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第11期1601-1615,共15页
Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA... Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA)is critical in improving content delivered to end users.Convolutional neural networks(CNNs)used in IQA face two common challenges.One issue is that these methods fail to provide the best representation of the image.The other issue is that the models have a large number of parameters,which easily leads to overfitting.To address these issues,the dense convolution network(DSC-Net),a deep learning model with fewer parameters,is proposed for no-reference image quality assessment(NR-IQA).Moreover,it is obvious that the use of multimodal data for deep learning has improved the performance of applications.As a result,multimodal dense convolution network(MDSC-Net)fuses the texture features extracted using the gray-level co-occurrence matrix(GLCM)method and spatial features extracted using DSC-Net and predicts the image quality.The performance of the proposed framework on the benchmark synthetic datasets LIVE,TID2013,and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task. 展开更多
关键词 no-reference image quality assessment(NR-IQA) Blind image quality assessment Multimodal dense convolution network(MDSC-Net) Deep learning Visual quality Perceptual quality
原文传递
多层螺旋CT三维成像质量评估方法研究 被引量:1
10
作者 魏方圆 孙博洋 +3 位作者 李爽 王超 王依 张斌 《中国医学装备》 2023年第2期30-34,共5页
目的:研究多层螺旋CT三维成像质量评估方法,提升CT三维成像的准确性,以保障CT影像的高质量。方法:通过简单指数衰减频率,计算X射线在穿透人体过程中散射与反射的穿透效果,建立X射线衰减指数模型。通过直角坐标系扇形束,统计图像测量的... 目的:研究多层螺旋CT三维成像质量评估方法,提升CT三维成像的准确性,以保障CT影像的高质量。方法:通过简单指数衰减频率,计算X射线在穿透人体过程中散射与反射的穿透效果,建立X射线衰减指数模型。通过直角坐标系扇形束,统计图像测量的组织密度,在CT的初始图像中获得图像噪声模型,并得到图像噪声信号以及通过滤波反投影重建的三维CT图像。以图像信噪比、空间分辨率、灰度值均匀性和重建时间作为评估指标,对CT三维成像质量进行评价。结果:所有图像序列下的信噪比均>2.5,空间分辨率分别>1.51 lp/mm和1.52 lp/mm,灰度值均匀性<20%,且重建时间远<25 s。结论:多层螺旋CT三维成像质量评估方法具备实用性,能够保证得到有效的图像质量评估结果,提高CT三维成像的准确性。 展开更多
关键词 多层面螺旋ct 三维成像 成像质量评估 X射线衰减指数模型 灰度值均匀性 空间分辨率
下载PDF
面向低剂量CT图像质量客观评价的MRF分析 被引量:4
11
作者 林小平 王超 邓杰航 《计算机工程与设计》 北大核心 2015年第3期721-724,737,共5页
为给低剂量CT(computed tomography)图像提供准确的客观评价指标,对常用的图像客观评价指标进行验证和比较分析。选用LIVE(laboratory for image and video engineering)综合图库对各个图像指标的性能进行验证分析,对不同剂量的体模CT... 为给低剂量CT(computed tomography)图像提供准确的客观评价指标,对常用的图像客观评价指标进行验证和比较分析。选用LIVE(laboratory for image and video engineering)综合图库对各个图像指标的性能进行验证分析,对不同剂量的体模CT图像进行客观评价。实验结果表明,基于马尔科夫随机场的互信息比其它指标更明显、准确地反映综合图库与低剂量CT图像的质量变化,能够为低剂量CT图像质量评价提供有力参考。 展开更多
关键词 图像质量评价 低剂量ct 马尔科夫随机向量场 结构相似度 互信息
下载PDF
飞行时间技术和高清技术对PET/CT图像质量的影响 被引量:4
12
作者 吴天棋 庄静文 +1 位作者 谢峰 白玫 《中国医学装备》 2016年第1期2-5,共4页
目的:分析PET/CT飞行时间技术(TOF)和高清技术(HD)的特点,以指导临床使用。方法:参照美国国家电气制造商协会(NEMA)标准,以PET/CT扫描NEMA标准国际电工委员会(IEC)体模,在TOF+HD+OSEM、TOF+OSEM、HD+OSEM以及OSEM的4种重... 目的:分析PET/CT飞行时间技术(TOF)和高清技术(HD)的特点,以指导临床使用。方法:参照美国国家电气制造商协会(NEMA)标准,以PET/CT扫描NEMA标准国际电工委员会(IEC)体模,在TOF+HD+OSEM、TOF+OSEM、HD+OSEM以及OSEM的4种重建条件下分别进行分析。结果:TOF+HD+OSEM组与OSEM组的对比度分别为41.70%~92.53%和32.10%~81.32%,本底变化率分别为1.48%~2.88%和1.71%~2.97%,肺区平均残余误差为11.5%和20.25%。结论:TOF+HD+OSEM图像对比度、本底变化率、衰减和散射校正精度均优于其他各组,TOF技术和HD技术配合使用对小病灶对比度有显著提高。 展开更多
关键词 飞行时间技术 高清技术 剂量评价 PET/ct 图像质量
下载PDF
CT图像的质量评估策略:基于预恢复图像先验信息 被引量:2
13
作者 高琦 朱曼曼 +2 位作者 李丹阳 边兆英 马建华 《南方医科大学学报》 CAS CSCD 北大核心 2021年第2期230-237,共8页
目的为有效提取更多无参考CT图像质量特征,本文提出一种基于预恢复图像先验信息的医用CT图像质量评估策略(PR-IQA),利用多信息融合输入提高IQA模型性能。方法基于卷积神经网络(CNN)的无参考医用CT图像质量评估策略。该方法利用图像恢复... 目的为有效提取更多无参考CT图像质量特征,本文提出一种基于预恢复图像先验信息的医用CT图像质量评估策略(PR-IQA),利用多信息融合输入提高IQA模型性能。方法基于卷积神经网络(CNN)的无参考医用CT图像质量评估策略。该方法利用图像恢复算法中的图像质量特征先验信息,将其以预恢复图像和恢复前后残差图像的形式,与原始失真图像信息融合输入到两个CNN中,通过多信息融合以提升CNN的特征提取能力和预测性能。实验使用基于Mayo诊所公开螺旋CT数据所建立的医用CT图像质量评估数据集。通过计算定量指标以及统计学检验对PR-IQA性能进行评估,分析了不同超参数设置对PR-IQA性能的影响。并将PR-IQA与基于单个CNN模型直接对原始失真图像进行NR-IQA的方法(BASELINE)以及8种经典的IQA算法进行对比实验。结果对比实验结果表明,基于3种不同图像恢复算法先验信息(双边滤波、非局部均值滤波、三维块匹配协同滤波)的PR-IQA模型性能优于所有对比IQA算法。并且相比BASELINE方法性能均有提升,其中PLCC平均提升12.56%,SROCC平均提升19.95%,RMSE平均降低22.77%。结论本文提出的PR-IQA方法能够充分利用图像恢复算法的先验信息,有效地预测医用CT图像质量。 展开更多
关键词 无参考医用ct图像质量评估 图像恢复算法 卷积神经网络
下载PDF
辐射剂量和管电压对CT图像质量的影响:基于任务的图像质量评价 被引量:4
14
作者 杨政君 张昂 +5 位作者 陈勇 姜江 王凌云 张勇 张璇 齐晓凤 《CT理论与应用研究(中英文)》 2022年第2期211-217,共7页
目的:通过基于任务的图像质量评价参数,研究对比不同辐射剂量和管电压对CT图像的影响。方法:使用GE Revolution Apex扫描美国放射学会(ACR)质量控制体模Gammex 464。采用3种剂量(5、10和20 mGy)和3种管电压(80、100和120 kVp)的扫描方... 目的:通过基于任务的图像质量评价参数,研究对比不同辐射剂量和管电压对CT图像的影响。方法:使用GE Revolution Apex扫描美国放射学会(ACR)质量控制体模Gammex 464。采用3种剂量(5、10和20 mGy)和3种管电压(80、100和120 kVp)的扫描方案并重建9组CT图像。选取体模module 1中骨和丙烯酸测量各组图像的任务传递函数(task-based transfer function,TTF,代表空间分辨率)并记录其TTF50%。选取体模module 3测量噪声功率谱(noise power spectrum,NPS,代表噪声)并记录噪声值、空间频率(f-peak)和NPS peak值。在图像TTF和NPS的基础上进一步计算图像的可检测能力指数(d′,代表对病灶的可检出能力)。剂量和管电压对图像的影响采用单因素方差分析,P值的多重比较采用FDR校正。结果:管电压较剂量对TTF50%的影响较为明显,但两者在骨和丙烯酸物质中的差异均无统计学意义。噪声和NPS peak随着剂量上升而显著减小;随着管电压的增加而减小,但差异不具有统计学意义。剂量较管电压对f-peak的影响较大,但两者差异均无统计学意义。图像的检出能力随着剂量的增加而显著升高;各管电压下图像的检出能力差异无统计学意义。结论:剂量相比管电压更能影响CT图像质量;随着剂量的增加,图像噪声显著改善,对病灶的检出能力显著提升。基于任务为基础的评价指标可以较为全面地反映CT图像质量。 展开更多
关键词 ct图像质量 辐射剂量 图像质量评价
下载PDF
图像质量客观评价方法在CT图像中的应用 被引量:17
15
作者 刘明娜 王谦 +1 位作者 杨新 朱铭 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2011年第2期357-364,共8页
针对临床CT成像应用中保证图像质量可辨度的条件下降低射线剂量的要求,本文研究了客观图像质量评价算法在计算机辅助评价CT图像质量中的应用,特别是对低剂量CT图像的质量评价问题。针对CT图像质量失真,如噪声增加、空间分辨率降低、对... 针对临床CT成像应用中保证图像质量可辨度的条件下降低射线剂量的要求,本文研究了客观图像质量评价算法在计算机辅助评价CT图像质量中的应用,特别是对低剂量CT图像的质量评价问题。针对CT图像质量失真,如噪声增加、空间分辨率降低、对比度降低等,本文在经典的图像信噪比评价方法的基础上,增加视觉信息保真测度、结构相似性测度的应用。改变CT射线剂量,以医生判断作为标准,评估客观图像质量评价测度用于CT图像质量预测的性能,进而分析CT图像的视觉失真特征。在对测试体模和动物切片进行的大量实验中,复小波域的结构相似性测度给出了与医生专业评判相符的结果。 展开更多
关键词 图像质量评价 低剂量ct成像 人眼视觉系统 结构相似性 多尺度几何分析
原文传递
新乡市2013年CT机影像质量控制检测结果分析 被引量:1
16
作者 毛喻萱 王电辉 +3 位作者 张冰洁 刘彤桢 贾天合 王建伟 《中文科技期刊数据库(引文版)医药卫生》 2015年第3期200-200,204,共2页
了解新乡市59台X射线计算机断层摄影装置(以下简称cT)影像质量现状,提高cT片的影像质量。降低受检者不必要的受照剂量。方法:按照国家标准GB17589—2011《x射线计算机断层摄影装置质量保证检测规范》规定的检测项目进行检测评价。结果:... 了解新乡市59台X射线计算机断层摄影装置(以下简称cT)影像质量现状,提高cT片的影像质量。降低受检者不必要的受照剂量。方法:按照国家标准GB17589—2011《x射线计算机断层摄影装置质量保证检测规范》规定的检测项目进行检测评价。结果:整机合格率为88.1%;二级以上医院CT机检测合格率高于二级以下医院(x2=8.24,P〈0.05);使用年限在五年以内的CT机检测合格率高于五年以上合格率(x2=4.27,P〈0.05);一手CT机的检测合格率为92.5%,二手CT机检测合格率为50.0%。 展开更多
关键词 影像质量 评价
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部