[Objective] The effects of ploughing Astragalus sinicus at maturity stage as green manure on paddy soil properties were studied to provide references for ad- vancing the green manure production and field sustainable d...[Objective] The effects of ploughing Astragalus sinicus at maturity stage as green manure on paddy soil properties were studied to provide references for ad- vancing the green manure production and field sustainable development. [Methods] A three-year field positioning experiment was carried out. In the first year, five differ- ent levels (0, 2.81, 5.61, 8.42, 11.23 t/hm~) of Astragalus sinicus ploughed at matu- rity stage were designed. And in the next two years, the amounts of ploughed As- tragalus sinicus at maturity stage were based on the natural growth amounts of As- tragalus sinicus at maturity stage of the former year in each plot field. The yields of Astragalus sinicus at maturity stage were estimated and ploughed directly before rice transplanting. Rice yield, soil nutrients, biological properties and water-stable aggre- gates of paddy fields were measured as well. [Results] The effective panicles and rice yields increased significantly after ploughing Astragalus sinicus at maturity stage. Meanwhile, the organic acid content in paddy field increased and the activities of soil phosphatases, invertase and catalase were higher. The soil dissolved organic carbon also increased with the increasing application of green manure. However, excess amount of green manure inhibited the soil microbial biomass carbon content. The macro aggregates and micro aggregates gathered to middle aggregates. [Conclusion] As green manure, the use of Astragalus sinicus at maturity stage could improve soil physiochemical and biological properties, improve soil fertility and increase rice yield significantly. But the ploughing amount of Astragalus sinicus at maturity stage before rice transplanting should be less than 8.42 t/hm2 (dry weight.展开更多
To investigate the effect of the application of rice husk (RH) and rice husk charcoal (RHC) on soil properties and rice production, pot experiment comprising of five treatments was conducted. Soil was mixed at the rat...To investigate the effect of the application of rice husk (RH) and rice husk charcoal (RHC) on soil properties and rice production, pot experiment comprising of five treatments was conducted. Soil was mixed at the rate of 0 (control), 2% and 4% (w/w) with RH and RHC, respectively with randomized complete block design (RCBD). RHC incorporation had a potential to reduce the acidity of the soil, whereas, RH incorporation had almost no effect on the pH of the soil. RH and RHC amendment both increased the saturated hydraulic conductivity, saturated water content, plant available water and field capacity but decreased the bulk density of soil. Crop growth components at harvest revealed that the highest plant height was recorded in RH4%. However, for the panicle length, panicle weight and number of tillers, the highest value was found in RHC2%, 14.2 cm, 4.0 g and 28.8 cm, respectively. Furthermore, number of panicle, 1000-grains weight and grain yield were also found highest in RHC2%, 22.4 g and 4.41 t/ha, respectively. However, for the number of grain per panicle and percentage of filled grain, the highest value was found in RH4%, 79.0 and 88.5, respectively. The grain yield increased by 38%, 28%, 18% and 22% and the biological yield increased by 27%, 18%, 14%, and 16% for RHC2%, RHC4%, RH2%, and RH4%, respectively, compared to that of the control;however, the significant difference was found only for RHC2% for both. The harvest index increased under all application rates of RH and RHC compared to that of control.展开更多
To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistan...To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.展开更多
Appropriate mechanized straw returning and tillage sowing techniques were effective means to optimize soil physical properties and enhance agricultural productivity,as well as important measures for the conservation a...Appropriate mechanized straw returning and tillage sowing techniques were effective means to optimize soil physical properties and enhance agricultural productivity,as well as important measures for the conservation and restoration of mollisols region in Northeast China.Under the condition of full-scale maize straw returning,four mechanized tillage and sowing modes were set,including plough tillage and sowing(PTS),combined tillage and sowing(CTS),no-tillage and sowing(NTS),and no-tillage and sowing with straw mulching(NTSM).In 2020 and 2021,the study investigated the effects of different mechanized tillage and sowing modes on soil physical properties,soybean yield and economic benefits.The results showed that during the pod-setting and pod-filling period of soybean,the NTS and NTSM treatments exhibited better effects on deep soil insulation and shallow soil moisture retention,the soil physical structure of PTS and CTS treatments were relatively ideal.Compared with PTS and CTS treatments,NTS and NTSM treatments significantly increased soil gravimetric water content(SWC)by 2.35%to 7.98%in the 5-15 cm soil layer and increased soil temperature(ST)by 3.94%to 10.42%in the 25-35 cm soil layer(p<0.05),significantly increased soil bulk density(SBD)by 2.98%to 6.72%and significantly reduced soil total porosity(STP)by 3.88%to 6.53%in the 5-25 cm soil layer,and significantly reduced soil gas phase ratio by 8.26%to 6.27%at the 15-25 cm soil layers,which caused soil three-phase ratio(STPR)of PTS and CTS treatment in 15-25 cm soil layer were relatively ideal.The soybean yield of NTSM treatment in 2020 was not significantly different from PTS and CTS treatment(p>0.05),the soybean yield of NTSM treatment in 2021 significantly increased by 7.30%and 5.84%over PTS and CTS treatments,respectively.And the average annual profit per unit area of NTSM treatment increased by 12.84%,12.41%and 8.57%compared with PTS,CTS and NTS treatments,respectively.Therefore,it was recommended to combine NTSM technique with PTS or CTS technique in a maize-soybean rotation system in mollisols region.The research results provided reference for the selection of appropriate mechanized tillage and sowing techniques in Northeast China’s mollisols region and had important guiding significance and practical value for the construction of rational plow layers and the implementation of conservation tillage.展开更多
Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and ...Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, p H value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N_2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts(root and seed) were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients(Mn, Ni, Co, Zn and Cu) and toxic elements(Pb, Cr and Cd) increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N_2-fixation.展开更多
In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of ...In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.展开更多
基金Supported by the Important Science and Technology Program for Agriculture of Zhejiang Province(2009C2001-TZ)the Taizhou Research and Development of Applied Technology,Zhejiang Province(091TG06)~~
文摘[Objective] The effects of ploughing Astragalus sinicus at maturity stage as green manure on paddy soil properties were studied to provide references for ad- vancing the green manure production and field sustainable development. [Methods] A three-year field positioning experiment was carried out. In the first year, five differ- ent levels (0, 2.81, 5.61, 8.42, 11.23 t/hm~) of Astragalus sinicus ploughed at matu- rity stage were designed. And in the next two years, the amounts of ploughed As- tragalus sinicus at maturity stage were based on the natural growth amounts of As- tragalus sinicus at maturity stage of the former year in each plot field. The yields of Astragalus sinicus at maturity stage were estimated and ploughed directly before rice transplanting. Rice yield, soil nutrients, biological properties and water-stable aggre- gates of paddy fields were measured as well. [Results] The effective panicles and rice yields increased significantly after ploughing Astragalus sinicus at maturity stage. Meanwhile, the organic acid content in paddy field increased and the activities of soil phosphatases, invertase and catalase were higher. The soil dissolved organic carbon also increased with the increasing application of green manure. However, excess amount of green manure inhibited the soil microbial biomass carbon content. The macro aggregates and micro aggregates gathered to middle aggregates. [Conclusion] As green manure, the use of Astragalus sinicus at maturity stage could improve soil physiochemical and biological properties, improve soil fertility and increase rice yield significantly. But the ploughing amount of Astragalus sinicus at maturity stage before rice transplanting should be less than 8.42 t/hm2 (dry weight.
文摘To investigate the effect of the application of rice husk (RH) and rice husk charcoal (RHC) on soil properties and rice production, pot experiment comprising of five treatments was conducted. Soil was mixed at the rate of 0 (control), 2% and 4% (w/w) with RH and RHC, respectively with randomized complete block design (RCBD). RHC incorporation had a potential to reduce the acidity of the soil, whereas, RH incorporation had almost no effect on the pH of the soil. RH and RHC amendment both increased the saturated hydraulic conductivity, saturated water content, plant available water and field capacity but decreased the bulk density of soil. Crop growth components at harvest revealed that the highest plant height was recorded in RH4%. However, for the panicle length, panicle weight and number of tillers, the highest value was found in RHC2%, 14.2 cm, 4.0 g and 28.8 cm, respectively. Furthermore, number of panicle, 1000-grains weight and grain yield were also found highest in RHC2%, 22.4 g and 4.41 t/ha, respectively. However, for the number of grain per panicle and percentage of filled grain, the highest value was found in RH4%, 79.0 and 88.5, respectively. The grain yield increased by 38%, 28%, 18% and 22% and the biological yield increased by 27%, 18%, 14%, and 16% for RHC2%, RHC4%, RH2%, and RH4%, respectively, compared to that of the control;however, the significant difference was found only for RHC2% for both. The harvest index increased under all application rates of RH and RHC compared to that of control.
基金supported by the Key Project of Developing Agriculture through Science and Technology of Shanghai Municipal Agricultural Commission,China(Grant No.2010-1-1)Shanghai Science and Technology Development Funds,China(Grant No.11QA1405900)the National High-Tech Research and Development Program of China(Grant No.2012AA101102)
文摘To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.
基金funded by the National Key Research and Development Program of China(Grant No.2021YFD20004)。
文摘Appropriate mechanized straw returning and tillage sowing techniques were effective means to optimize soil physical properties and enhance agricultural productivity,as well as important measures for the conservation and restoration of mollisols region in Northeast China.Under the condition of full-scale maize straw returning,four mechanized tillage and sowing modes were set,including plough tillage and sowing(PTS),combined tillage and sowing(CTS),no-tillage and sowing(NTS),and no-tillage and sowing with straw mulching(NTSM).In 2020 and 2021,the study investigated the effects of different mechanized tillage and sowing modes on soil physical properties,soybean yield and economic benefits.The results showed that during the pod-setting and pod-filling period of soybean,the NTS and NTSM treatments exhibited better effects on deep soil insulation and shallow soil moisture retention,the soil physical structure of PTS and CTS treatments were relatively ideal.Compared with PTS and CTS treatments,NTS and NTSM treatments significantly increased soil gravimetric water content(SWC)by 2.35%to 7.98%in the 5-15 cm soil layer and increased soil temperature(ST)by 3.94%to 10.42%in the 25-35 cm soil layer(p<0.05),significantly increased soil bulk density(SBD)by 2.98%to 6.72%and significantly reduced soil total porosity(STP)by 3.88%to 6.53%in the 5-25 cm soil layer,and significantly reduced soil gas phase ratio by 8.26%to 6.27%at the 15-25 cm soil layers,which caused soil three-phase ratio(STPR)of PTS and CTS treatment in 15-25 cm soil layer were relatively ideal.The soybean yield of NTSM treatment in 2020 was not significantly different from PTS and CTS treatment(p>0.05),the soybean yield of NTSM treatment in 2021 significantly increased by 7.30%and 5.84%over PTS and CTS treatments,respectively.And the average annual profit per unit area of NTSM treatment increased by 12.84%,12.41%and 8.57%compared with PTS,CTS and NTS treatments,respectively.Therefore,it was recommended to combine NTSM technique with PTS or CTS technique in a maize-soybean rotation system in mollisols region.The research results provided reference for the selection of appropriate mechanized tillage and sowing techniques in Northeast China’s mollisols region and had important guiding significance and practical value for the construction of rational plow layers and the implementation of conservation tillage.
基金supported by the project from Council of Scientific and Industrial Research,New Delhi,India (Grant No.21 (0859)/11/EMR-Ⅱ)
文摘Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, p H value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N_2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts(root and seed) were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients(Mn, Ni, Co, Zn and Cu) and toxic elements(Pb, Cr and Cd) increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N_2-fixation.
文摘In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.