期刊文献+
共找到214,659篇文章
< 1 2 250 >
每页显示 20 50 100
Differentiation of Soil Fauna Populations in Conventional Tillage and No-Tillage Red Soil Ecosystems 被引量:8
1
作者 HU FENG LI HUIXIN and WU SHANMEI(Nanjing Agriculturol University, Nanjing 210095 (China)) 《Pedosphere》 SCIE CAS CSCD 1997年第4期339-348,共10页
In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evalu... In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evaluate their responses to tillage disturbance. Earthworms, macrry and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times, while enchytraeids and nematodes favored CT system, predicting certain adaptability of these animals to plow-disturbed soil environment. On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base (C and N pools) and microflora. The population structure of soil fauna was also affected by tillage treatments. Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and omnivorepredators increased in NT soil. Possible reasons for the differentiation in both size and structure of the fauna population were discussed and the ecological significance involved in these changes was emphasized. 展开更多
关键词 conventional tillage no-tillage red soil ecosystems soil fauna
下载PDF
Effect of experimental warming on soil respiration under conventional tillage and no-tillage farmland in the North China Plain 被引量:6
2
作者 TU Chun LI Fa-dong +3 位作者 QIAO Yun-feng ZHU Nong GU Cong-ke ZHAO Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期967-979,共13页
Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT... Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT) and no-tillage (NT) farmland for winter wheat and summer maize rotation system in North China Plain (NCP). Treatments include CT with and without warming (CTW and CTN), NT with and without warming (NTW and NTN). The results indicated that warming had no sig- nificant effect on soil moisture in irrigated farmland of NCP (P〉0.05). The elevated average soil temperature of 1.1-116℃ in crop growing periods could increase annual soil CO2 emission by 10.3% in CT filed (P〉0.05), but significantly increase it by 12.7% in NT field (P〈0.05), respectively. The disturbances such as plowing, irrigation and precipitation resulted in the obvious soil CO2 emission peaks, which contributed 36.6-40.8% of annual soil cumulative CO2 emission. Warming would enhance these soil CO2 emission peaks; it might be associated with the warming-induced increase of autotrophic respiration and heterotrophic respiration. Compared with un-warming treatments, dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) in warming treatments were significantly increased by 11.6-23.4 and 12.9-23.6%, respectively, indicating that the positive responses of DOC and MBC to warming in both of two tillage systems. Our study highlights that climate warming may have positive effects on soil C release in NCP in association with response of labile C substrate to warming. 展开更多
关键词 global warming conventional tillage no-tillage soil respiration dissolved organic carbon soil microbial biomasscarbon
下载PDF
Effects of Subsoiling on Soil Moisture Under No-Tillage for Two Years 被引量:32
3
作者 QIN Hong-ling GAO Wang-sheng +4 位作者 MA Yue-cun MA Li YIN Chun-mei CHEN Zhe CHEN Chun-lan 《Agricultural Sciences in China》 CAS CSCD 2008年第1期88-95,共8页
In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for ... In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for 2 years was operated from 2005 to 2006. Based on the data of the soil moisture and crop yield, the physical basis of subsoiling for water conservation and yield increase was analyzed. The results showed that the soil water storage under subsoiling, from the soil surface to a depth of 100 cm was more than that under no-tillage for the growth season. In the 0-100 cm soil depth, the soil moisture in 50-100 cm depth under subsoiling was more compared with no-tillage, which increased when it's drought and decreased when it's rainy with the increase in soil depth. Compared with no-tillage, subsoiling could reduce the water consumption of oats in the 0-50 cm depth and increase the water consumption in the 50-100 cm depth. Also, subsoiling increased the yield by 18.29% and the water use efficiency by 16.8% in a two-year average. The effects of subsoiling on water conservation and yield increase were affected by precipitation, and a well-proportioned rainfall was better to increase yield and water use efficiency. Meanwhile, subsoiling decreased bulk density, which increased with the available precipitation. Subsoiling under no-tillage is the effective rotation tillage to contain more soil moisture and improve water use efficiency in ecotone of North China. 展开更多
关键词 no-tillage SUBsoilING water conservation yield increasing
下载PDF
Suppression of weeds and weed seeds in the soil by stubbles and no-tillage in an arid maize-winter wheat-common vetch rotation on the Loess Plateau of China 被引量:1
4
作者 YANG Mei ZHAO Yuxin +2 位作者 YANG Huimin SHEN Yuying ZHANG Xiaoyan 《Journal of Arid Land》 SCIE CSCD 2018年第5期809-820,共12页
Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, hi... Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, high abundances of weeds in reduced tillage systems cause significant yield losses. In this study, we explored the effects of no-tillage and stubble retention on the number and density of weeds and weed seeds in a 12-year maize-winter wheat-common vetch rotation on the Loess Plateau. Four treatments including conventional tillage, no-tillage, conventional tillage+stubble retention and no-tillage+stubble retention were designed and applied. We found that no-tillage increased the number of weed species and weed density in most of the crops, while stubble retention decreased weed density in maize and tended to suppress weeds in both no-tillage treatments(no-tillage and no-tillage+stubble retention). No-tillage led to an increase in the number of weed species in the weed seedbank and tended to increase seed density during the spring growth of winter wheat, but it decreased seed density during post-vetch fallow. Stubble retention tended to reduce seed density during the spring growth of winter wheat and post-vetch fallow. We concluded that no-tillage can promote weeds in the experimental crop rotation, while stubble retention suppresses weeds in untilled fields. The combined effects of stubble retention and no-tillage on weed suppression varied among the three crops. Based on these results, we recommend stubble retention in untilled legume-crop rotations on the Loess Plateau to improve the control of weeds. 展开更多
关键词 agricultural conservation practice crop rotation no-tillage rainfed soil soil seedbank stubble retention weed control
下载PDF
Inter-annual changes in the aggregate-size distribution and associated carbon of soil and their effects on the straw-derived carbon incorporation under long-term no-tillage 被引量:8
5
作者 YIN Tao ZHAO Cai-xia +2 位作者 YAN Chang-rong DU Zhang-liu HE Wen-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第11期2546-2557,共12页
Converting from conventional tillage to no-tillage influences the soil aggregate-size distribution and thus soil organic carbon (SOC) stabilization. However, the dynamics of soil aggregation and the straw-derived ca... Converting from conventional tillage to no-tillage influences the soil aggregate-size distribution and thus soil organic carbon (SOC) stabilization. However, the dynamics of soil aggregation and the straw-derived carbon (C) incorporation within aggregate fractions are not well understood. An experiment was established in 2004 to test the effects of two treatments, no-tillage with residue (NT) and conventional tillage without residue (CT), on the soil aggregate-size distribution and SOC stabilization in a continuous maize (Zea mays L.) cropping system located in the semiarid region of northern China. Soil samples were collected from the 0-10 cm layer in 2008, 2010 and 2015, and were separated into four aggregate-size classes (〉2, 0.25-2, 0.053-0.25, and 〈0.053 mm) by wet-sieving. In each year, NT soil had a higher proportion of macroaggregates (i.e., 〉2 and 0.25-2 mm) and associated SOC concentration compared with CT. Additionally, to compare straw-derived C incorporation within NT and CT aggregate fractions, ^13C-labeled straw was incubated with intact NT and CT soils. After 90 days, the highest proportion of 13C-labeled straw-derived C was observed in the 〉2 mm fraction, and this proportion was lower in NT than that in CT soil. Overall, we conclude that long-term continuous NT increased the proportion of macroaggregates and the C concentration within macroaggregates, and the physical protection provided by NT is beneficial for soil C sequestration in the continuous maize cropping system in semiarid regions of northern China. 展开更多
关键词 no-tillage aggregate-size distribution aggregate-associated carbon ^13C-labeled straw
下载PDF
Long-Term Effect of No-Tillage on Soil Organic Carbon Fractions in a Continuous Maize Cropping System of Northeast China 被引量:27
6
作者 HUANG Shan SUN Yan-Ni +2 位作者 RUI Wen-Yi LIU Wu-Ren ZHANG Wei-Jian 《Pedosphere》 SCIE CAS CSCD 2010年第3期285-292,共8页
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil org... Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage. 展开更多
关键词 carbon sequestration conservation tillage particulate organic matter physical fractionation soil aggregates
下载PDF
Comparison of Soil Fauna (Oribatids and Enchytraeids)Between Conventional and Organic (Tillage and No-Tillage Practices) Farming Crop Fields in Japan 被引量:7
7
作者 M.FUJITA S.FUJIYAMA 《Pedosphere》 SCIE CAS CSCD 2001年第1期11-20,共10页
The major soil animal groups, enchytraeid worms and oribatid mites, were compared in the abundance and diversity between conventional fields (CT) and organic farming fields with tillage (OT) or no-tillage (ON) practic... The major soil animal groups, enchytraeid worms and oribatid mites, were compared in the abundance and diversity between conventional fields (CT) and organic farming fields with tillage (OT) or no-tillage (ON) practices. The values of abundance, species richness, diversity and evenness were significantly larger in OT and ON than in CT, indicating that the abundance and diversity in organic farming fields were greater than those in conventional farming. The community structure of enchytraeid genera was different between OT and ON. Enchytraeus was the most abundant in OT, while Fridericia in ON. The abundance of oribatids in OT was similar to that in ON, while the species richness and diversity in the former were smaller. These results suggested that no-tillage practice under organic management might contribute to the improvement in quality of soil mesofauna. 展开更多
关键词 ENCHYTRAEIDAE organic farming ORIBATIDA soil management TILLAGE
下载PDF
Combining Ridge with No-Tillage in Lowland Rice-Based Cropping System: Long-Term Effect on Soil and Rice Yield 被引量:18
8
作者 JIANG Xian-Jun2 and XIE De-Ti College of Resources and Environment, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716 (China) 《Pedosphere》 SCIE CAS CSCD 2009年第4期515-522,共8页
A tillage method of combining ridge with no-tillage (RNT) was employed in lowland rice-based cropping system to study the long-term effects of RNT on soil profile pattern, soil water stable aggregate distribution, nut... A tillage method of combining ridge with no-tillage (RNT) was employed in lowland rice-based cropping system to study the long-term effects of RNT on soil profile pattern, soil water stable aggregate distribution, nutrients stratification and yields of rice and post-rice crops. After flooded paddy field (FPF) was practiced with RNT for a long time, soil profile changed from G to A-P-G, and horizon G was shifted to a deeper position in the profile. Also the proportion of macroaggregate (> 2 mm) increased, whereas the proportion of silt and clay (< 0.053 mm) decreased under RNT, indicating a better soil structure that will prevent erosion. RNT helped to control leaching and significantly improved total N, P, K and organic matter in soil. The highest crop yields were found under RNT system every year, and total crop yields were higher under conventional paddy-upland rotation tillage (CR) than under FPF, except in 2003 and 2006 when serious drought occurred. RNT was proven to be a better tillage method for lowland rice-based cropping system. 展开更多
关键词 aggregate-size distribution conservative tillage flooded paddy field soil profile pattern
下载PDF
Low soil carbon saturation deffcit limits the abundance of cbbL-carrying bacteria under long-term no-tillage maize cultivation in northern China 被引量:1
9
作者 YIN Tao QIN Hong-ling +2 位作者 YAN Chang-rong LIU Qi HE Wen-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第8期2399-2412,共14页
The responses of cbbL-carrying bacteria to different levels of soil carbon saturation deficits(SCSD)under tillage managements are largely unknown.We assessed the influence of SCSD on the abundance and diversity of cbb... The responses of cbbL-carrying bacteria to different levels of soil carbon saturation deficits(SCSD)under tillage managements are largely unknown.We assessed the influence of SCSD on the abundance and diversity of cbbLcarrying bacteria under long-term no-tillage with residue retention(NT)and conventional tillage without residue retention(CT)cultivation systems in maize.We found SCSD was smaller under NT than under CT in the 0-15 cm soil layer.The abundance and the Shannon diversity of cbbL-carrying bacteria in the NT treatment were lower than in the CT treatment.Soil carbon saturation and cbbL gene abundance showed a significant positive correlation,but there was no correlation between soil carbon saturation and cbbL gene diversity.However,the long-term NT practice decreased cbbL-carrying bacteria diversity and altered the community structure of the cbbL-carrying bacteria.Our results indicated that low SCSD limited the abundance of cbbL-carrying bacteria,but there was no relationship between low SCSD and diversity of cbbLcarrying bacteria.We suggest that further studies of cbbL-carrying bacteria carbon sequestration rates and capacity should be based on the effect of management practices on cbbL-carrying bacteria abundance and diversity.Our study has important implications for the relationship between the biological and physicochemical mechanisms in CO_(2) fixation. 展开更多
关键词 conservation tillage soil carbon saturation cbbL-carrying bacteria abundance and diversity
下载PDF
Effects of Five Years Adoption of No-Tillage Systems for Vegetables Crops in Soil Organic Matter Contents
10
作者 Carlos E. P. Lima ítalo M. R. Guedes +4 位作者 Juscimar da Silva Flávia A. Alcantara Nuno R. Madeira Agnaldo D. F. Carvalho Mariana R. Fontenelle 《Agricultural Sciences》 2018年第1期117-128,共12页
Vegetables productions systems are done normally with intense soil tillage causing a strong decline of soil quality. Use of conservation systems can be an alternative to recover this quality. In order to evaluate the ... Vegetables productions systems are done normally with intense soil tillage causing a strong decline of soil quality. Use of conservation systems can be an alternative to recover this quality. In order to evaluate the effects of such systems on soil organic matter, an experiment has been conducted in randomized blocks design and factorial scheme 3 × 2: three soil management systems (no-tillage;reduced tillage and conventional tillage) and two cover crops (maize single;and intercropping maize with gray velvet bean—Stizolobium niveum);and repeated measures over time. Soil samples were collected before the implementation of the experiment and at the end of each crop cycle until the fifth crop cycle. Carbon associated with humic substances is also determined in 0 - 5 cm, 5 - 10 cm and 10 - 30 cm at the end of the last crop cycle. The SOM content was higher in RT (48.34 g·kg-1) than in the CT (39.48 g·kg-1) at the end of the fifth crop cycle. SOM content in NT (44.92 g·kg-1) was statistically equal to RT and CT, during the same period. In 0 - 5 cm, carbon contents associated to the humic substances present the same behavior of SOM contents in 0 - 10 cm. Probably these results are associated with the capacity of each system to improve superficial contents of SOM stable fractions. It follows that the conservation systems used are alternatives to the cultivation vegetables in order to improve soil organic matter contents. 展开更多
关键词 no-tillage Reduced TILLAGE soil Conservation soil Management
下载PDF
Effects of Nitrogen Application Rate, Density and Seedling Age on Dry Matter Accumulation of No-tillage Rape in Seedling Stage 被引量:5
11
作者 艾复清 张帆 +1 位作者 舒中兵 樊宁 《Agricultural Science & Technology》 CAS 2008年第6期93-96,107,共5页
[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three ... [Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three factors, the 310 scheme was designed to study the effects of nitrogen application rate, density and seedling age on dry matter accumulation of no-tillage rape in seedling stage. [Result] With the increase of nitrogen application rate, density and seedling age, the dry matter content appeared like a parabola, increasing firstly and then declining. The change of nitrogen application rate caused greater influence than that of density and seedling age; the interaction effects between nitrogen application rate and density were greater than that between nitrogen application rate and seedling age as well as between density and seedling age. [Conclusion] Considered comprehensively, the dry matter content of no-tillage rape in seedling stage reached the highest level (4 768.2 kg/hm2) when the nitrogen application rate, the density and the seedling age were 195 kg/hm2, 93 000 plants/hm2 and 33 d, respectively. 展开更多
关键词 Nitrogen application rate DENSITY SEEDLING age Dry matter ACCUMULATION SEEDLING no-tillage RAPE
下载PDF
Effects of Planting Density, Duration of Disclosing Plastic Film and Nitrogen Fertilization on the Growth Dynamics of Rapeseed under No-tillage Cultivation 被引量:2
12
作者 曾志三 艾复清 张一帆 《Agricultural Science & Technology》 CAS 2009年第1期130-134,139,共6页
[ Objective] This study was to understend the optimized combination of planting density, duration of disclosing plastic film and nitrogen fertilization under no-tillage cultivation. [ Method] Quadratic polynomial regr... [ Objective] This study was to understend the optimized combination of planting density, duration of disclosing plastic film and nitrogen fertilization under no-tillage cultivation. [ Method] Quadratic polynomial regression and saturated D-optimal design were employed to investigate the effects of planting density, duration of disclosing plastic film and nitrogen fertilization on the dynamics growth of rapeseed under no-tillage cultivation.[ Result] Within the experimental range, the growth dynamics of no-tillage cultivated rapeseed assumed a rise-fall tend. For the effects to the growth dynamics of no-tillage cultivated rapeseed, nitrogen application amount was higher than planting density and duration of disclosing plastic film. The interaction effect between planting density and duration of disclosing plastic film was higher than that between nitrogen application amount and planting density, and between nitrogen application amount and duration of disclosing plastic film. [ Conclusion] The optimized combination of these factors for dynamic growth of rapeseed under no-tillage cultivation was determined to be: planting density of per hectare 154 925 individuals, duration of disclosing plastic film of 110 d, nitrogen application amount of 315 kg/hm^2. 展开更多
关键词 no-tillage cultivated rapeseed Planting density Duration of disclosing plastic film Nitrogen application amount Growth dynamics
下载PDF
A Comparative Study on No-tillage Late DirectSowing Varieties of Brassica napus L. in Western Sichuan Plain
13
作者 蒋俊 蒲晓斌 +4 位作者 张锦芳 李浩杰 汤永禄 牛应泽 蒋梁材 《Agricultural Science & Technology》 CAS 2013年第9期1254-1258,共5页
[Objective] There are continuous rainy days in Western Sichuan Plain in autumn. In order to avoid the impact of wet injury in sowing period, new varieties of Brassica napus L. with low erucidic acid and glucosinolate ... [Objective] There are continuous rainy days in Western Sichuan Plain in autumn. In order to avoid the impact of wet injury in sowing period, new varieties of Brassica napus L. with low erucidic acid and glucosinolate content which are suitable for no-tillage late direct-sowing in Western Sichuan Plain were screened in this study. [Method] Ten major varieties of Brassica napus L. were screened by randomized block design and triplicated plot test with no-tillage late direct-sowing and straw mulching for comparative experiment. [Result] ‘Chuanyou 58', ‘Huayouza 10'and ‘Ningza 11' have high yield(per unit area yield above 3 000 kg/hm2), excellent comprehensive characters, short growth period, high resistance and high quality;‘Huayouza 13' and ‘Zheshuang 3' have high yield potential(per unit area yield above 2 775 kg/hm2), high resistance, high quality and moderate growth period; other varieties have extremely significant yield reduction, poor comprehensive characters and low resistance compared with control. [Conclusion] Excellent varieties of Brassica napus L. in the middle and lower reaches of Yangtze River such as ‘Huayouza10', ‘Ningza 11', ‘Huayouza 13' and ‘Zheshuang 3' can be successfully introduced and applied for large-area cultivation in Western Sichuan Plain. 展开更多
关键词 Western Sichuan Plain no-tillage Late direct-sowing Brassica napus L. High yield
下载PDF
Experimental Study on No-tillage Cultivation of Flowering Chinese Cabbage in Rice Winter Fallow Fields
14
作者 袁祖华 高述华 +2 位作者 丁茁荑 童辉 杨剑 《Agricultural Science & Technology》 CAS 2015年第7期1412-1414,共3页
The research made comparisons on no-tillage cultivation and ploughing cultivations of Flowering Chinese cabbage on one-season paddy fields and explored the effects of no-tillage cultivation of Flowering Chinese cabbag... The research made comparisons on no-tillage cultivation and ploughing cultivations of Flowering Chinese cabbage on one-season paddy fields and explored the effects of no-tillage cultivation of Flowering Chinese cabbage on survival rate, insect damages, production cost, yield and benefits of plants. The results indicated that no-tillage cultivation reduced the injured rate of Flowering Chinese cabbage by cutworms, and production cost, but crop yield and output value declined as well. Specifically, yield in the treatment as per no-tillage cultivation lowered by 10.3% and 11.9% compared with the treatments by machine-based ploughing and manual ploughing, and the production interests declined by 11.9% and 11.1%, accordingly. 展开更多
关键词 Flowering Chinese cabbage Winter fallow field no-tillage cultivation BENEFITS
下载PDF
Characterization of Leaf Photosynthetic Properties for No-Tillage Rice 被引量:5
15
作者 CHEN Song XIA Guo-mian +2 位作者 ZHAO Wei-ming WU Fei-bo ZHANG Guo-ping 《Rice science》 SCIE 2007年第4期283-288,共6页
A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carrie... A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carried out at three locations (Jiaxing, Hangzhou and Xiaoshan, Zhejiang Province, China) for two years (2005 and 2006). Grain yield was constant in Jiaxing, but slightly higher in Hangzhou and Xiaoshan under no-tillage cultivation than that under conventional cultivation. In comparison with the conventional cultivation, no-tillage cultivation showed less biomass accumulation before heading and higher capacity of matter production during grain filling. A significantly higher leaf net photosynthetic rate was observed for the plants under no-tillage than for those under conventional tillage. The fluorescence parameter (Fv/Fm) in leaf did not show any difference between the two cultivations. The effect of cultivation management on transpiration rate (Tr) and SPAD value of rice leaf was dependent on the location and year. 展开更多
关键词 PHOTOSYNTHESIS LEAF RICE no-tillage PLOUGH YIELD
下载PDF
Growth Characteristics and Yield of Late-Season Rice under No-tillage and Non-flooded Cultivation with Straw Mulching 被引量:4
16
作者 WANG Dong LI Hui-xin +2 位作者 QIN Jiang-tao LI Da-ming Hu Feng 《Rice science》 SCIE 2010年第2期141-148,共8页
A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping sys... A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping system in seasonal drought region of southeast China (Yujiang County, Jiangxi Province). The rice cultivation methods included no-tillage and flooded rice cultivation (N-F), no-tillage and non-flooded rice cultivation with straw mulching (N-SM), and no-tillage and non-flooded rice cultivation without straw mulching (N-ZM). There was no significant difference in rice grain yield between the N-SM and N-F treatments. However, the rice grain yields in the N-SM and N-F treatments were significantly higher than that in the N-ZM treatment. The late-season rice plants in the N-SM treatment had significantly higher numbers of effective panicles and total grains per hill compared with those in the N-ZM treatment. The above-ground dry matter of late-season rice was similar between the N-SM and N-F treatments. Compared with the N-F treatment, the N-ZM and N-SM treatments significantly decreased the leaf area at the heading stage. Moreover, the N-SM treatment could significantly increase total root length and root tip number at the grain-filling stage compared with the N-ZM treatment. 展开更多
关键词 RICE no-tillage non-flooded cultivation straw mulching growth characteristics YIELD
下载PDF
Long-Term No-Tillage Direct Seeding Mode for Water-Saving and Drought-Resistance Rice Production in Rice-Rapeseed Rotation System 被引量:1
17
作者 DU Xing-bin CHEN Chen +4 位作者 LUO Li-jun XIA Long-ping LIU Kang CHEN Yin-hua YU Xin-qiao 《Rice science》 SCIE 2014年第4期210-216,共7页
To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistan... To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer. 展开更多
关键词 no-tillage direct seeding rice yield soil physiochemical property water-saving and drought-resistance rice rotation system
下载PDF
No-tillage with straw mulching boosts wheat grain yield by improving the eco-physiological characteristics in arid regions 被引量:3
18
作者 YIN Wen FAN Zhi-long +7 位作者 HU Fa-long FAN Hong HE Wei SUN Ya-li WANG Feng ZHAO Cai YU Ai-zhong CHAI Qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3416-3429,共14页
Straw returning to the field is a technical measure of crop production widely adopted in arid areas. It is unknown whether crop yield can be further increased by improving the eco-physiological characteristics when st... Straw returning to the field is a technical measure of crop production widely adopted in arid areas. It is unknown whether crop yield can be further increased by improving the eco-physiological characteristics when straw returning is applied in the crop production system. So, a three-year field experiment was conducted with various straw returning treatments for wheat production:(i) no-tillage with straw mulching(NTSM),(ii) no-tillage with straw standing(NTSS),(iii) conventional tillage with straw incorporation(CTS), and(iv) conventional tillage with no straw returning(CT, control). The eco-physiological and yield formation indicators were investigated to provide the basis for selecting the appropriate straw returning method to increase wheat yield and clarifying its regulation mechanism on eco-physiology. The results showed that NTSM and NTSS treatments had better regulation of eco-physiological characteristics and had a higher yield increase than CTS and CT. Meanwhile, NTSM had a relatively higher yield than NTSS through better regulation of eco-physiological characteristics. Compared to CT, the leaf area index of NTSM was decreased by 6.1–7.6% before the Feekes 10.0 stage of wheat, but that of NTSM was increased by 38.9–45.1% after the Feekes 10.0 stage. NTSM effectively regulated the dynamics of the photosynthetic source of green leaves during the wheat growth period. NTSM improved net photosynthetic rate by 10.2–21.4% and 11.0–21.6%, raised transpiration rate by 4.4–10.0% and 5.3–6.1%, increased leaf water use efficiency by 5.6–10.4% and 5.4–14.6%, at Feekes 11.0 and 11.2 stages of wheat, compared to CT, respectively. NTSM had higher leaf water potential(LWP) by 7.5–12.0% and soil water potential(SWP) by 8.9–24.0% from Feekes 10.3 to 11.2 stages of wheat than CT. Meanwhile, the absolute value of difference on LWP and SWP with NTSM was less than that with CT, indicating that NTSM was conducive to holding the stability of water demand for wheat plants and water supply of soil at arid conditions. Thus, NTSM had a greater grain yield of wheat by 18.6–27.3% than CT, and the high yield was attributed to the synchronous increase and cooperative development of ear number, grain number per ear, and 1 000-grain weight. NTSM had a positive effect on regulating the eco-physiological characteristics and can be recommended to enhance wheat grain yield in arid conditions. 展开更多
关键词 STRAW soil GRAIN
下载PDF
No-tillage effects on grain yield and nitrogen requirements in hybrid rice transplanted with single seedlings: Results of a long-term experiment
19
作者 HUANG Min CHEN Jia-na +2 位作者 CAO Fang-bo ZOU Ying-bin Norman Uphoff 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第1期24-32,共9页
This study was conducted to determine whether,and if so how,the grain yield and nitrogen(N) requirements of hybrid rice transplanted as single seedlings are affected by no-tillage(NT) practices.A fixed field experimen... This study was conducted to determine whether,and if so how,the grain yield and nitrogen(N) requirements of hybrid rice transplanted as single seedlings are affected by no-tillage(NT) practices.A fixed field experiment was done at the Experimental Farm of Hunan Agricultural University in Changsha,Hunan Province,China,from 2004 to 2014.Grain yield and yield attributes(panicle number per m2,spikelet number per panicle,spikelet filling percentage,grain weight,total biomass,and harvest index) were evaluated as well as the N-use characteristics(total N uptake,internal N-use efficiency,and N requirements) of hybrid rice transplanted as single seedlings comparing NT with conventional tillage(CT).A significant finding was that there were no significant differences in grain yield,yield attributes,and N-use characteristics between CT and NT.Averaged across the 11 years,grain yield and N requirements were 9.51 t ha^(-1) and 20.2 kg t^(-1) under CT and 9.33 t ha^(-1) and 20.0 kg t^(-1) under NT,respectively.There were significant yearly variations in grain yield,yield attributes,and N-use characteristics observed under both CT and NT.The yearly variation in grain yield was related to simultaneous changes in spikelet number per panicle,grain weight,total biomass,and harvest index.Also,it was found that grain yield was positively correlated with internal N-use efficiency but negatively correlated with N requirements.It is concluded that grain yield and N requirements in hybrid rice when transplanted as single seedlings are not affected adversely by NT.The results of this study suggest that(1) compatible relationships among yield attributes can be established in hybrid rice that is transplanted as single seedlings,and(2) higher grain yield and higher N-use efficiency can be concurrently achieved in hybrid rice transplanted as single seedlings. 展开更多
关键词 grain yield hybrid rice NITROGEN requirements no-tillage TRANSPLANTING of single seedlings
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function 被引量:1
20
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部