The NP-hard no-wait flow shop scheduling problems with makespan and total flowtime minimization are considered. Objective increment properties of the problems are analyzed. A non-dominated classification method is int...The NP-hard no-wait flow shop scheduling problems with makespan and total flowtime minimization are considered. Objective increment properties of the problems are analyzed. A non-dominated classification method is introduced to class population individuals into Pareto fronts to improve searching efficiency. Besides investigating the crowding distance and the elitist solution strategy, two effective bi-criteria local search procedures based on objective increments are presented to improve searching effectiveness. Based on the properties and methods, a hybrid evolutionary algorithm is proposed for the considered problems and compared with the best existing algorithms. Experimental results show that the proposed algorithm is effective with high efficiency.展开更多
No-wait flow shops with makespan minimization are classified as NP-hard. In this paper, the optimization objective is equivalently transformed to total idle-time minimization. The independence relationship between tas...No-wait flow shops with makespan minimization are classified as NP-hard. In this paper, the optimization objective is equivalently transformed to total idle-time minimization. The independence relationship between tasks is analyzed, and objective increment properties are established for the fundamental operators of the heuristics. The quality of the new schedules generated during a heuristic is judged only by objective increments and not by the traditional method, which computes and compares the objective of a whole schedule. Based on objective increments, the time complexity of the heuristic can be decreased by one order. A seed phase is presented to generate an initial solution according to the transformed objective. Construction and improvement phases are introduced by experimental analysis. The FCH (fast composite heuristic) is proposed and compared with the most effective algorithms currently available for the considered problem. Experimental results show that the effectiveness of the FCH is similar to that of the best methods but requires far less computation time. The FCH can also be efficient in real time scheduling and rescheduling for no-wait flow shops.展开更多
基金The National Natural Science Foundation of China(No.60504029,60672092)the National High Technology Research and Development Program of China(863Program)(No.2008AA04Z103)
文摘The NP-hard no-wait flow shop scheduling problems with makespan and total flowtime minimization are considered. Objective increment properties of the problems are analyzed. A non-dominated classification method is introduced to class population individuals into Pareto fronts to improve searching efficiency. Besides investigating the crowding distance and the elitist solution strategy, two effective bi-criteria local search procedures based on objective increments are presented to improve searching effectiveness. Based on the properties and methods, a hybrid evolutionary algorithm is proposed for the considered problems and compared with the best existing algorithms. Experimental results show that the proposed algorithm is effective with high efficiency.
基金the National Natural Science Foundation of China (Grant Nos.60504029 and 60672092)the National High Technology Re-search and Development Program of China (863 Program) (Grant No.2008AA04Z103)
文摘No-wait flow shops with makespan minimization are classified as NP-hard. In this paper, the optimization objective is equivalently transformed to total idle-time minimization. The independence relationship between tasks is analyzed, and objective increment properties are established for the fundamental operators of the heuristics. The quality of the new schedules generated during a heuristic is judged only by objective increments and not by the traditional method, which computes and compares the objective of a whole schedule. Based on objective increments, the time complexity of the heuristic can be decreased by one order. A seed phase is presented to generate an initial solution according to the transformed objective. Construction and improvement phases are introduced by experimental analysis. The FCH (fast composite heuristic) is proposed and compared with the most effective algorithms currently available for the considered problem. Experimental results show that the effectiveness of the FCH is similar to that of the best methods but requires far less computation time. The FCH can also be efficient in real time scheduling and rescheduling for no-wait flow shops.