In order to solve the no-wait flowshop scheduling problem to minimize the maximum lateness,three job-block-based neighborhoods are proposed,among which the block exchange neighborhood have a size of O(n4)while the b...In order to solve the no-wait flowshop scheduling problem to minimize the maximum lateness,three job-block-based neighborhoods are proposed,among which the block exchange neighborhood have a size of O(n4)while the block swap and the simplified block exchange neighborhoods have a size of O(n3).With larger sizes than the existing neighborhoods,the proposed neighborhoods can enhance the solution quality of local search algorithms.Speedup properties for the neighborhoods are developed,which can evaluate a neighbor in constant time and explore the neighborhoods in time proportional to their proposed sizes. Unlike the dominance-rule-based speedup method,the proposed speedups are applicable to any machine number.Three neighborhoods and the union of block swap and the simplified block exchange neighborhoods are compared in the tabu search.Computational results on benchmark instances show that three tabu search algorithms with O(n3)neighborhoods outperform the existing algorithms and the tabu search algorithm with the union has the best performance among all the tested algorithms.展开更多
No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Seve...No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods.展开更多
The strong non-deterministic polynomial-hard( NP-hard)character of job shop scheduling problem( JSSP) has been acknowledged widely and it becomes stronger when attaches the nowait constraint,which widely exists in man...The strong non-deterministic polynomial-hard( NP-hard)character of job shop scheduling problem( JSSP) has been acknowledged widely and it becomes stronger when attaches the nowait constraint,which widely exists in many production processes,such as chemistry process, metallurgical process. However,compared with the massive research on traditional job shop problem,little attention has been paid on the no-wait constraint.Therefore,in this paper, we have dealt with this problem by decomposing it into two sub-problems, the timetabling and sequencing problems,in traditional frame work. A new efficient combined non-order timetabling method,coordinated with objective of total tardiness,is proposed for the timetabling problems. As for the sequencing one,we have presented a modified complete local search with memory combined by crossover operator and distance counting. The entire algorithm was tested on well-known benchmark problems and compared with several existing algorithms.Computational experiments showed that our proposed algorithm performed both effectively and efficiently.展开更多
No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic al...No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.展开更多
The m-machine no-wait flowshop scheduling problem is addressed where setup times are treated as separate from processing times. The objective is to minimize total tardiness. Different dispatching rules have been inves...The m-machine no-wait flowshop scheduling problem is addressed where setup times are treated as separate from processing times. The objective is to minimize total tardiness. Different dispatching rules have been investigated and three were found to be superior. Two heuristics, a simulated annealing (SA) and a genetic algorithm (GA), have been proposed by using the best performing dispatching rule as the initial solution for SA, and the three superior dispatching rules as part of the initial population for GA. Moreover, improved versions of SA and GA are proposed using an insertion algorithm. Extensive computational experiments reveal that the improved versions of SA and GA perform about 95% better than SA and GA. The improved version of GA outperforms the improved version of SA by about 3.5%.展开更多
基金The National Natural Science Foundation of China(No.60672092,60504029,60873236)the National High Technology Researchand Development Program of China(863 Program)(No.2008AA04Z103)
文摘In order to solve the no-wait flowshop scheduling problem to minimize the maximum lateness,three job-block-based neighborhoods are proposed,among which the block exchange neighborhood have a size of O(n4)while the block swap and the simplified block exchange neighborhoods have a size of O(n3).With larger sizes than the existing neighborhoods,the proposed neighborhoods can enhance the solution quality of local search algorithms.Speedup properties for the neighborhoods are developed,which can evaluate a neighbor in constant time and explore the neighborhoods in time proportional to their proposed sizes. Unlike the dominance-rule-based speedup method,the proposed speedups are applicable to any machine number.Three neighborhoods and the union of block swap and the simplified block exchange neighborhoods are compared in the tabu search.Computational results on benchmark instances show that three tabu search algorithms with O(n3)neighborhoods outperform the existing algorithms and the tabu search algorithm with the union has the best performance among all the tested algorithms.
文摘No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods.
基金National Natural Science Foundations of China(Nos.61174040,61104178)Shanghai Commission of Science and Technology,China(No.12JC1403400)the Fundamental Research Funds for the Central Universities,China
文摘The strong non-deterministic polynomial-hard( NP-hard)character of job shop scheduling problem( JSSP) has been acknowledged widely and it becomes stronger when attaches the nowait constraint,which widely exists in many production processes,such as chemistry process, metallurgical process. However,compared with the massive research on traditional job shop problem,little attention has been paid on the no-wait constraint.Therefore,in this paper, we have dealt with this problem by decomposing it into two sub-problems, the timetabling and sequencing problems,in traditional frame work. A new efficient combined non-order timetabling method,coordinated with objective of total tardiness,is proposed for the timetabling problems. As for the sequencing one,we have presented a modified complete local search with memory combined by crossover operator and distance counting. The entire algorithm was tested on well-known benchmark problems and compared with several existing algorithms.Computational experiments showed that our proposed algorithm performed both effectively and efficiently.
基金Project 60304016 supported by the National Natural Science Foundation of China
文摘No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.
文摘The m-machine no-wait flowshop scheduling problem is addressed where setup times are treated as separate from processing times. The objective is to minimize total tardiness. Different dispatching rules have been investigated and three were found to be superior. Two heuristics, a simulated annealing (SA) and a genetic algorithm (GA), have been proposed by using the best performing dispatching rule as the initial solution for SA, and the three superior dispatching rules as part of the initial population for GA. Moreover, improved versions of SA and GA are proposed using an insertion algorithm. Extensive computational experiments reveal that the improved versions of SA and GA perform about 95% better than SA and GA. The improved version of GA outperforms the improved version of SA by about 3.5%.