期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
1
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 noble metal aerogels Surface electronic structure ORR ELECTROCATALYST Organic ligands
下载PDF
A general synthetic strategy for N, P co-doped graphene supported metal-rich noble metal phosphides for hydrogen generation
2
作者 Jingwen Ma Xiang Li +6 位作者 Guangyu Lei Jun Wang Juan Wang Jian Liu Ming Ke Yang Li Chunwen Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期152-162,共11页
The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process o... The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts. 展开更多
关键词 noble metal phosphides ELECTROCATALYST Deoxyribonucleic acid Hydrogen evolution pH universal
下载PDF
Advances in noble metal-modified g-C_(3)N_(4) heterostructures toward enhanced photocatalytic redox ability
3
作者 Xiao Zhang Ping Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2368-2389,共22页
The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-base... The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-based composites can be enhanced by adjusting the surface plasmon resonance(SPR)of noble metal nanoparticles(e.g.,Cu,Au,and Pd)in the entire visible region.Adjustments can be carried out by varying the nanocomponents of the materials.The SPR of noble metals can enhance the local electromagnetic field and improve interband transition,and resonant energy transfer occurs from plasmonic dipoles to electron-hole pairs via near-field electromagnetic interactions.Thus,noble metals have emerged as relevant nanocomponents for g-C_(3)N_(4) used in CO_(2) photoreduction and water splitting.Herein,recent key advances in noble metals(either in single atom,cluster,or nanoparticle forms)and composite photocatalysts based on inorganic or organic nanocomponent-incorporated g-C_(3)N_(4) nanosheets are systematically discussed,including the applications of these photocatalysts,which exhibit improved photoinduced charge mobility in CO_(2) photoconversion and H2 production.Issues related to the different types of multi-nanocomponent heterostructures(involving Schottky junctions,Z-/S-scheme heterostructures,noble metals,and additional semiconductor nanocomponents)and the adjustment of dimensionality of heterostructures(by incorporating noble metal nanoplates on g-C_(3)N_(4) forming 2D/2D heterostructures)are explored.The current prospects and possible challenges of g-C_(3)N_(4) composite photocatalysts incorporated with noble metals(e.g.,Au,Pt,Pd,and Cu),particularly in water splitting,CO_(2) reduction,pollution degradation,and chemical conversion applications,are summarized. 展开更多
关键词 g-C_(3)N_(4) HETEROSTRUCTURE noble metal PHOTOCATALYSIS H_(2)generation CO_(2)
下载PDF
Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors:Overview 被引量:5
4
作者 Li‑Yuan Zhu Lang‑Xi Ou +3 位作者 Li‑Wen Mao Xue‑Yan Wu Yi‑Ping Liu Hong‑Liang Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期353-427,共75页
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring,exhaled breath diagnosis,and food freshness analys... Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring,exhaled breath diagnosis,and food freshness analysis.Among various chemiresistive sensing materials,noble metal-decorated semiconducting metal oxides(SMOs)have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals.This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures(e.g.,nanoparticles,nanowires,nanorods,nanosheets,nanoflowers,and microspheres)for high-performance gas sensors with higher response,faster response/recovery speed,lower operating temperature,and ultra-low detection limits.The key topics include Pt,Pd,Au,other noble metals(e.g.,Ag,Ru,and Rh.),and bimetals-decorated SMOs containing ZnO,SnO_(2),WO_(3),other SMOs(e.g.,In_(2)O_(3),Fe_(2)O_(3),and CuO),and heterostructured SMOs.In addition to conventional devices,the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed.Moreover,the relevant mechanisms for the sensing performance improvement caused by noble metal decoration,including the electronic sensitization effect and the chemical sensitization effect,have also been summarized in detail.Finally,major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed. 展开更多
关键词 noble metal BImetal Semiconducting metal oxide Chemiresistive gas sensor Electronic sensitization Chemical sensitization
下载PDF
Finned Zn-MFI zeolite encapsulated noble metal nanoparticle catalysts for the oxidative dehydrogenation of propane with carbon dioxide
5
作者 En-Hui Yuan Yiming Niu +7 位作者 Xing Huang Meng Li Jun Bao Yong-Hong Song Bingsen Zhang Zhao-Tie Liu Marc-Georg Willinger Zhong-Wen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期479-491,I0011,共14页
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin... Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix. 展开更多
关键词 Oxidative dehydrogenation PROPANE Carbon dioxide Finned Zn-MFI zeolite Encapsulated noble metal nanoparticles
下载PDF
Towards the selectivity distinction of phenol hydrogenation on noble metal catalysts
6
作者 Shanjun Mao Zhe Wang +7 位作者 Zhirong Chen Kejun Wu Kaichao Zhang Qichuan Li Huihuan Yan Guofeng Lü Guodong Huang Yong Wang 《Nano Materials Science》 EI CAS CSCD 2023年第1期91-100,共10页
Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is s... Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is still missing owing to the unclear catalytic mechanism.This work tries to unravel the mechanism of phenol hydro-genation and the reasons causing the selectivity discrepancy on noble metal catalysts under mild conditions.Results show that different reaction pathways always firstly converge to the formation of cyclohexanone under mild conditions.The selectivity discrepancy mainly depends on the activity for cyclohexanone sequential hy-drogenation,in which two factors are found to be responsible,i.e.the hydrogenation energy barrier and the competitive chemisorption between phenol and cyclohexanone,if the specific co-catalyzing effect of H 2 O on Ru is not considered.Based on the above results,a quantitative descriptor,E b(one/pl)/E a,in which E a can be further correlated to the d band center of the noble metal catalyst,is proposed by the first time to roughly evaluate and predict the selectivity to cyclohexanone for catalyst screening. 展开更多
关键词 PHENOL Selective hydrogenation CYCLOHEXANONE DFT noble metal catalysts
下载PDF
Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts 被引量:27
7
作者 刘雨溪 邓积光 +2 位作者 谢少华 王治伟 戴洪兴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1193-1205,共13页
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys... Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs. 展开更多
关键词 Volatile organic compound Catalytic combustion Porous transition metal oxide Perovskite-type oxide Supported noble metal catalyst
下载PDF
Syngas Production by Methane Reforming with Carbon Dioxide on Noble Metal Catalysts 被引量:15
8
作者 M.Rezaei S.M.Alavi +1 位作者 S.Sahebdelfar Zi-Feng Yan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期327-334,共8页
A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were cha... A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were characterized using BET, TPR, TPO, TPH, and H2S chemisorption techniques. The activity results showed high activity and stability for the Ru and Rh catalysts. The TPO and TPH analyses indicated that the main reason for lower activity and stability of the Pd catalyst was the formation of the less reactive deposited carbon and sintering of the catalyst. 展开更多
关键词 noble metal SYNGAS dry reforming carbon dioxide METHANE
下载PDF
Plasmon Assisted Highly Efficient Visible Light Catalytic CO_(2) Reduction Over the Noble Metal Decorated Sr-Incorporated g-C_(3)N_(4) 被引量:6
9
作者 Muhammad Humayun Habib Ullah +4 位作者 Lang Shu Xiang Ao Asif Ali Tahir Chungdong Wang Wei Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期416-433,共18页
The photocatalytic performance of g-C_(3)N_(4) for CO_(2) conversion is still inadequate by several shortfalls including the instability,insu cient solar light absorption and rapid charge carrier's recombination r... The photocatalytic performance of g-C_(3)N_(4) for CO_(2) conversion is still inadequate by several shortfalls including the instability,insu cient solar light absorption and rapid charge carrier's recombination rate. To solve these problems,herein,noble metals(Pt and Au)decorated Sr-incorporated g-C_(3)N_(4) photocatalysts are fabricated via the simple calcination and photo-deposition methods. The Sr-incorporation remarkably reduced the g-C_(3)N_(4) band gap from 2.7 to 2.54 eV,as evidenced by the UV–visible absorption spectra and the density functional theory results. The CO_(2) conversion performance of the catalysts was evaluated under visible light irradiation. The Pt/0.15 Sr-CN sample produced 48.55 and 74.54 μmol h-1 g-1 of CH_(4) and CO,respectively.These amounts are far greater than that produced by the Au/0.15 Sr-CN,0.15 Sr-CN,and CN samples. A high quantum e ciency of 2.92% is predicted for the Pt/0.15 Sr-CN sample. Further,the stability of the photocatalyst is confirmed via the photocatalytic recyclable test. The improved CO_(2) conversion performance of the catalyst is accredited to the promoted light absorption and remarkably enhanced charge separation via the Sr-incorporated mid gap states and the localized surface plasmon resonance e ect induced by noble metal nanoparticles.This work will provide a new approach for promoting the catalytic e ciency of g-C_(3)N_(4) for e cient solar fuel production. 展开更多
关键词 g-C_(3)N_(4) Sr-incorporation noble metal deposition Density functional theory Energy applications
下载PDF
Light alloying element‐regulated noble metal catalysts for energy‐related applications 被引量:4
10
作者 Hui Chen Bo Zhang +1 位作者 Xiao Liang Xiaoxin Zou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第3期611-635,共25页
Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g... Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements. 展开更多
关键词 noble metal Heterogeneous catalysis Light element ALLOY Electronic structure
下载PDF
Calculation of phonon spectrum for noble metals by modified analytic embedded atom method (MAEAM) 被引量:5
11
作者 张晓军 张建民 徐可为 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第9期2108-2113,共6页
In the harmonic approximation, the atomic force constants are derived and the phonon dispersion curves along four major symmetry directions [00ζ], [0ζζ], [ζζζ] and [0ζ1] (or △∑, A and Z in group-theory nota... In the harmonic approximation, the atomic force constants are derived and the phonon dispersion curves along four major symmetry directions [00ζ], [0ζζ], [ζζζ] and [0ζ1] (or △∑, A and Z in group-theory notation) are calculated for four noble metals Cu, Ag, Au and Pt by combining the modified analytic embedded atom method (MAEAM) with the theory of lattice dynamics. A good agreement between calculations and measurements, especially for lower frequencies, shows that the MAEAM provides a reasonable description of lattice dynamics in noble metals. 展开更多
关键词 noble metals lattice dynamics MAEAM
下载PDF
Electrocatalytic and photocatalytic performance of noble metal doped monolayer MoS2 in the hydrogen evolution reaction: A first principles study 被引量:4
12
作者 Zheng Zhang Kai Chen +2 位作者 Qiang Zhao Mei Huang Xiaoping Ouyang 《Nano Materials Science》 CAS CSCD 2021年第1期89-94,共6页
To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)usi... To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)using first principles calculation combined with the climbing image nudged elastic band method.We find the band gap of the monolayer MoS_(2) is reduced significantly by the noble metal doping,which is unfavorable to improving its photocatalytic performance.The optical absorption coefficient shows that the doping does not increase the ability of the monolayer MoS_(2) to absorb visible light.The monolayer MoS_(2) doped with the noble metal is not a potential photocatalyst for the hydrogen evolution reaction because the band edge position of the conduction band minimum is lower than-4.44 eV,the reduction potential of H^(+)/H_(2).Fortunately,the band gap reduction increases the electron transport performance of the monolayer MoS_(2),and the activation energy of water splitting is greatly reduced by the noble metal doping,especially the Pt doping.On the whole,noble metal doping can enhance the electrocatalytic performance of the monolayer MoS_(2). 展开更多
关键词 ELECTROCATALYTIC Monolayer MoS2 noble metal doping Hydrogen evolution reaction First principles calculation
下载PDF
State of arts on the bio-synthesis of noble metal nanoparticles and their biological application 被引量:2
13
作者 Kok Bing Tan Daohua Sun +2 位作者 Jiale Huang Tareque Odoom-Wubah Qingbiao Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期272-290,共19页
Nanomaterials are materials in which at least one of the dimensions of the particles is 100 nm and below.There are many types of nanomaterials,but noble metal nanoparticles are of interest due to their uniquely large ... Nanomaterials are materials in which at least one of the dimensions of the particles is 100 nm and below.There are many types of nanomaterials,but noble metal nanoparticles are of interest due to their uniquely large surface-to-volume ratio,high surface area,optical and electronic properties,high stability,easy synthesis,and tunable surface functionalization.More importantly,noble metal nanoparticles are known to have excellent compatibility with bio-materials,which is why they are widely used in biological applications.The synthesis method of noble metal nanoparticles conventionally involves the reduction of the noble metal salt precursor by toxic reaction agents such as NaBH4,hydrazine,and formaldehyde.This is a major drawback for researchers involved in biological application researches.Hence,the bio-synthesis of noble metal nanoparticles(NPs)by bio-materials via bio-reduction provides an alternative method to synthesize noble metal nanoparticles which are potentially non-toxic and safer for biological application.In this review,the bio-synthesis of noble metal nanoparticle including gold nanoparticle(AuNPs),silver nanoparticle(AgNPs),platinum nanoparticle(PtNPs),and palladium nanoparticle(PdNPs)are first discussed.This is followed by a discussion of these biosynthesized noble metal in biological applications including antimicrobial,wound healing,anticancer drug,and bioimaging.Based on these,it can be concluded that the study on bio-synthesized noble metal nanoparticles will expand further involving bio-reduction by unexplored bio-materials.However,many questions remain on the feasibility of bio-synthesized noble metal nanoparticles to replace existing methods on various biological applications.Nevertheless,the current development of the biological application by bio-synthesized noble metal NPs is still intensively ongoing,and will eventually reach the goal of full commercialization. 展开更多
关键词 noble metal nanoparticles Bio-synthesis Bio-templating Bio-material Bio-logical application NANOMATERIALS
下载PDF
Atomic level engineering of noble metal nanocrystals for energy conversion catalysis 被引量:2
14
作者 Yancai Yao Shiqi Wang +1 位作者 Zhijun Li Yuen Wua 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期604-624,I0014,共22页
It is commonly known that the performance of electrocatalysts is largely influenced by the size,morphology,composition,and crystalline phase of noble metal nanocrystals.However,the limited reserves and high cost of no... It is commonly known that the performance of electrocatalysts is largely influenced by the size,morphology,composition,and crystalline phase of noble metal nanocrystals.However,the limited reserves and high cost of noble metals largely restrict their industrial applications.Along with the development of characterization techniques,theoretical calculations,and advanced material synthesis methods,modulating the electrocatalytic properties of noble metal nanocrystals at the atomic scale(e.g.,monolayer/sub-monolayer,single-atom alloy,ultrafine structure)has been flooding out.Engineering noble metal nanocrystals at the atomic level could not only immensely improve the noble metal atom utilization efficiency and lower the cost,but also boost the catalytic performance.In this review,we summarize the recent advanced progresses of regulating the noble metal nanocrystals at the atomic scale towards energy conversion application.Then,the challenges and perspectives of designing noble metal nanocrystals at the atomic scale in the future are discussed and considered.It is expected that this review will inspire scientists to further study precious metal-based materials for energy-oriented catalysis. 展开更多
关键词 noble metal Atomic regulation Synthetic strategy ELECTROCATALYSIS
下载PDF
Molecular Dynamics Simulation of Liquid Noble Metals Au and Ag 被引量:1
15
作者 李庆春 陈魁英 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第6期443-447,共5页
1.IntroductionRecently Daw and Baskes[1,2]proposed the embedded atom model(EAM)on the basisof quasi-atom concept[3]and density-function theory.It is applicable to the transition met-als as well as the simple metals.It... 1.IntroductionRecently Daw and Baskes[1,2]proposed the embedded atom model(EAM)on the basisof quasi-atom concept[3]and density-function theory.It is applicable to the transition met-als as well as the simple metals.It has been widely used in point defect[4],surface[5]andthermal expansion[6].Foiles[7]made the application of the EAM to liquid transition metalsand showed that the EAM also provided a realistic description of the energetics and structure 展开更多
关键词 molecular dynamics simulation noble metal embedded atom model
下载PDF
SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL 被引量:1
16
作者 XIA Guo-fu HU Lin-jie +2 位作者 NIE Hong SHI Ya-hua LI Da-dong 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2001年第1期25-29,共5页
Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble meta... Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts. 展开更多
关键词 aromatic hydrogenation sulfur resistance noble metal catalysts
下载PDF
High-index faceted noble metal nanostructures drive renewable energy electrocatalysis 被引量:1
17
作者 Chunji Li Mingchuan Luo +1 位作者 Zhonghong Xia Shaojun Guo 《Nano Materials Science》 CAS 2020年第4期309-315,共7页
Noble metallic nanocrystals are used in a wide variety of applications,such as catalysis,batteries,and bio-and chemical sensors.Most of the previous studies focus on the preparation of thermodynamically stable nanocry... Noble metallic nanocrystals are used in a wide variety of applications,such as catalysis,batteries,and bio-and chemical sensors.Most of the previous studies focus on the preparation of thermodynamically stable nanocrystals enclosed by low-index facets and discuss their corresponding catalytic properties.Recently,researchers have found that the nanocrystals with high-index facets(HIFs)are of more interest for electrocatalysis.Herein,we review recent key progress in the synthesis of noble metallic nanoparticles enclosed with HIFs and their facetdependent electrocatalytic behaviors.First,we introduce the concept of HIFs,and establish the correlation between their surface structure and catalytic activity.Then,we discuss various synthetic approaches for controlling the shapes and composition of the nanocrystals enclosed by HIFs.Afterwards,we showcase the enhanced electrocatalytic performance realized by HIF-based nanostructures.Finally,we provide guidance on how to improve the electrocatalysis by engineering HIFs on noble metallic nanocrystals. 展开更多
关键词 High-index facets noble metal nanocrystals ELECTROCATALYSIS Electrochemical method Wet-chemical method
下载PDF
Computer simulation of symmetrical tilt grain boundaries in noble metals with MAEAM
18
作者 张建民 黄育红 +1 位作者 徐可为 Ji Vincent 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第1期210-216,共7页
This paper reports that an atomic scale study of [^-110] symmetrical tilt grain boundary (STGB) has been made with modified analytical embedded atom method (MAEAM) for 44 planes in three noble metals Au, Ag and Cu... This paper reports that an atomic scale study of [^-110] symmetrical tilt grain boundary (STGB) has been made with modified analytical embedded atom method (MAEAM) for 44 planes in three noble metals Au, Ag and Cu. For each metal, the energies of two crystals ideally joined together are unrealistically hlgh due to very short distance between atoms near the grain boundary (GB) plane. A relative slide between grains in the GB plane results in a significaut decrease in GB energy and a minimum value is obtained at specific translation distance. The minimum energy of Cu is much higher than that of Ag and Au, while the minimum energy of Ag is slightly higher than that of Au. For all the three metals, the three lowest energies correspond to identical (111), (113) and (331) boundary successively for two translations considered; from minimization of GB energy, these boundaries should be preferable in [^-110] STGB for noble metals. This is consistent with the experimental results. In addition, the minimum energy increases with increasing reciprocal planar coincidence density ∑, but decreases with increasing relative interplanar distance d/a. 展开更多
关键词 noble metals STGB grain boundary energy TRANSLATION MAEAM
下载PDF
Catalytic methanation reaction over alumina supported cobalt oxide doped noble metal oxides for the purification of simulated natural gas
19
作者 Wan Azelee Wan Abu Bakar Rusmidah Alil +2 位作者 Abdul Aziz Abdul Kadir Salmiah Jamal Mat Rosid Nurul Shafeeqa Mohammad 《燃料化学学报》 EI CAS CSCD 北大核心 2012年第7期822-830,共9页
A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination te... A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co(10∶90)/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co(10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co(10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis(EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co(10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co(10∶90)/Al2O3 catalyst. 展开更多
关键词 natural gas cobalt oxide noble metal catalyst methanation reaction
下载PDF
Noble Metal-Doped In_2O_3 for Enhancing Response to H_2
20
作者 Jiaqiang Xu Xiaohua Wang Jianian Shen 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期136-139,共4页
Nanocrystalline In_2O_3 was synthesized through a controllable solvothermal process in one-step at 210℃for 24 h. Gas sensing properties were tested by mixing gas in air in static state.At 268.5℃,the nanocrystal show... Nanocrystalline In_2O_3 was synthesized through a controllable solvothermal process in one-step at 210℃for 24 h. Gas sensing properties were tested by mixing gas in air in static state.At 268.5℃,the nanocrystal showed high sensitivity to LPG but lower sensitivity to H_2 and CO.In order to enhance the sensitivities to H_2 and CO,0.5 mass % Au and Pd were doped by an impregnation process.The sensitivities to H_2 and CO were increased under different working temperature.Au-doped In_2O_3 was superior to Pd-doped In_2O_3 whatever to H_2 or CO;the sensitivity was increased with the increase of working temperature;gas sensing properties to H_2 overmatched to CO. 展开更多
关键词 solvothermal process indium oxide noble metal H2 sensor
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部