Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g...Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements.展开更多
For the study of the effect of Plagodent and Palladent noble alloy dentures (OJSC "SIC 'Supermetal'", Russia), the elemental compositions of the fluids obtained from gingival sulcus of abutment teeth...For the study of the effect of Plagodent and Palladent noble alloy dentures (OJSC "SIC 'Supermetal'", Russia), the elemental compositions of the fluids obtained from gingival sulcus of abutment teeth of metal ceramic dentures with frames made of the above-stated dental alloys, have been investigated. Response of white blood cells and fibroblasts in the gingival fluid and the mixed saliva of the patients a long time after prosthetic repair, relying on the content of proinflammatory interleukins IL-1 β and IL-6, anti-inflammatory interleukins IL-4 and IL-10, the factor of tumor necrosis TNF-α and lactoferrin, has been investigated. The results obtained have convincingly proved the biosafety of the Plagodent and Palladent noble alloys.展开更多
The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential...The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.展开更多
Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated...Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.展开更多
Noble metal-based high-entropy alloy nanoparticles(NM-HEA NPs) have exhibited brilliant catalytic performance toward electrocatalytic energy conversion and attracted increasing attention. The near-equimolar mixed elem...Noble metal-based high-entropy alloy nanoparticles(NM-HEA NPs) have exhibited brilliant catalytic performance toward electrocatalytic energy conversion and attracted increasing attention. The near-equimolar mixed elements of NM-HEA NPs may result in the unique properties including cocktail effect, high entropy effect and lattice distortion effect, which are beneficial for improving the catalytic performance and reducing the amount of noble metal. Herein, several advanced NM-HEA NPs as electrocatalysts for energy conversion are systematically summarized. The preparation methods of NM-HEA NPs are evaluated as well as the catalytic properties and mechanism are discussed classified by electrocatalytic reactions. Finally,the challenges and prospects in this field are carefully discussed. This review provides an overview on recent advances of NM-HEA electrocatalysts for energy conversion and draws more attention in this infant research field.展开更多
文摘Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements.
文摘For the study of the effect of Plagodent and Palladent noble alloy dentures (OJSC "SIC 'Supermetal'", Russia), the elemental compositions of the fluids obtained from gingival sulcus of abutment teeth of metal ceramic dentures with frames made of the above-stated dental alloys, have been investigated. Response of white blood cells and fibroblasts in the gingival fluid and the mixed saliva of the patients a long time after prosthetic repair, relying on the content of proinflammatory interleukins IL-1 β and IL-6, anti-inflammatory interleukins IL-4 and IL-10, the factor of tumor necrosis TNF-α and lactoferrin, has been investigated. The results obtained have convincingly proved the biosafety of the Plagodent and Palladent noble alloys.
文摘The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.
基金supported by the Ph.D.Program Foundation of Ministry of Education of China(20131103110002)the NNSF of China(21377008)+2 种基金National High Technology Research and Development Program(863 Program,2015AA034603)Foundation on the Creative Research Team Con-struction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Plat-form-National Materials Research Base Construction~~
文摘Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.
基金financially supported by the National Natural Science Foundation of China(Nos.21706074 and 21972038)the Natural Science Foundation of Henan Province(No.2023000410209)+1 种基金the Key Research and Promotion Project of Henan Province(Nos.202102210261 and 202102310267)the Top-notch Personnel Fund of Henan Agricultural University(No.30500682)。
文摘Noble metal-based high-entropy alloy nanoparticles(NM-HEA NPs) have exhibited brilliant catalytic performance toward electrocatalytic energy conversion and attracted increasing attention. The near-equimolar mixed elements of NM-HEA NPs may result in the unique properties including cocktail effect, high entropy effect and lattice distortion effect, which are beneficial for improving the catalytic performance and reducing the amount of noble metal. Herein, several advanced NM-HEA NPs as electrocatalysts for energy conversion are systematically summarized. The preparation methods of NM-HEA NPs are evaluated as well as the catalytic properties and mechanism are discussed classified by electrocatalytic reactions. Finally,the challenges and prospects in this field are carefully discussed. This review provides an overview on recent advances of NM-HEA electrocatalysts for energy conversion and draws more attention in this infant research field.