A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the densit...A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.展开更多
A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established throu...A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.展开更多
There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equa...There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equations,a new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements(SLEs)is presented.Firstly,a precise model of a flexible bar of SLE is established by the higher order shear deformable beam element based on the absolute nodal coordinate formulation(ANCF),and the master/slave freedom method is used to obtain the dynamics equations of SLEs without constraint equations.Secondly,according to features of deployable structures,the specification matrix method(SMM)is proposed to eliminate the constraint equations among SLEs in the frame of ANCF.With this method,the inner and the boundary nodal coordinates of element characteristic matrices can be separated simply and efficiently,especially on condition that there are vast nodal coordinates.So the element characteristic matrices can be added end to end circularly.Thus,the dynamic model of deployable structure reduces dimension and can be assembled without any constraint equation.Next,a new iteration procedure for the generalized-a algorithm is presented to solve the ordinary differential equations(ODEs)of deployable structure.Finally,the proposed methodology is used to analyze the flexible multi-body dynamics of a planar linear array deployable structure based on three scissor-like elements.The simulation results show that flexibility has a significant influence on the deployment motion of the deployable structure.The proposed methodology indeed reduce the difficulty of solving and the amount of equations by eliminating redundant degrees of freedom and the constraint equations in scissor-like elements and among scissor-like elements.展开更多
In this paper, we prove the convergence of the nodal expansion method, a new numerical method for partial differential equations and provide the error estimates of approximation solution.
This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and t...This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and the von Mises and two-surface yield criteria,a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of strain-hardening thin plates,and the C^(1)nodal NEM is adopted for discretization.Additionally,König’s theory is used to deal with time integration by treating the generalized plastic strain increment at each load vertex.A direct iterative method is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at each iteration.Kinematic shakedown load factors are directly calculated in a monotonically converging manner.Numerical examples validate the accuracy and convergence of the developed method and illustrate the influences of limited and unlimited strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.展开更多
基金Projects(11372055,11302033)supported by the National Natural Science Foundation of ChinaProject supported by the Huxiang Scholar Foundation from Changsha University of Science and Technology,ChinaProject(2012KFJJ02)supported by the Key Labortory of Lightweight and Reliability Technology for Engineering Velicle,Education Department of Hunan Province,China
文摘A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.
文摘A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.
基金Supported by National Natural Science Foundation of China(Grant No.51175422)
文摘There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equations,a new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements(SLEs)is presented.Firstly,a precise model of a flexible bar of SLE is established by the higher order shear deformable beam element based on the absolute nodal coordinate formulation(ANCF),and the master/slave freedom method is used to obtain the dynamics equations of SLEs without constraint equations.Secondly,according to features of deployable structures,the specification matrix method(SMM)is proposed to eliminate the constraint equations among SLEs in the frame of ANCF.With this method,the inner and the boundary nodal coordinates of element characteristic matrices can be separated simply and efficiently,especially on condition that there are vast nodal coordinates.So the element characteristic matrices can be added end to end circularly.Thus,the dynamic model of deployable structure reduces dimension and can be assembled without any constraint equation.Next,a new iteration procedure for the generalized-a algorithm is presented to solve the ordinary differential equations(ODEs)of deployable structure.Finally,the proposed methodology is used to analyze the flexible multi-body dynamics of a planar linear array deployable structure based on three scissor-like elements.The simulation results show that flexibility has a significant influence on the deployment motion of the deployable structure.The proposed methodology indeed reduce the difficulty of solving and the amount of equations by eliminating redundant degrees of freedom and the constraint equations in scissor-like elements and among scissor-like elements.
基金This project is supported by the National Science Foundation of China
文摘In this paper, we prove the convergence of the nodal expansion method, a new numerical method for partial differential equations and provide the error estimates of approximation solution.
基金supported by the Chinese Postdoctoral Science Foundation(2013M540934).
文摘This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and the von Mises and two-surface yield criteria,a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of strain-hardening thin plates,and the C^(1)nodal NEM is adopted for discretization.Additionally,König’s theory is used to deal with time integration by treating the generalized plastic strain increment at each load vertex.A direct iterative method is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at each iteration.Kinematic shakedown load factors are directly calculated in a monotonically converging manner.Numerical examples validate the accuracy and convergence of the developed method and illustrate the influences of limited and unlimited strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.