通信系统的无特征网络链路中,由于忽略了节点的特征属性,导致预测评估结果的曲线下面积(Area Under Curve,AUC)值较低。针对上述现象,提出融合节点重要性的通信系统链路预测方法。提取无特征网络中节点的局部特征,构建节点的时间序列数...通信系统的无特征网络链路中,由于忽略了节点的特征属性,导致预测评估结果的曲线下面积(Area Under Curve,AUC)值较低。针对上述现象,提出融合节点重要性的通信系统链路预测方法。提取无特征网络中节点的局部特征,构建节点的时间序列数据。计算每个节点的重要性,利用节点的重要性和时间序列数据,通过特定的算法,获取每个节点的预测值,从而实现无特征网络链路的预测。实验结果表明,该方法预测评估结果的AUC值较高,能够更准确地预测网络中的链路连接。展开更多
文摘通信系统的无特征网络链路中,由于忽略了节点的特征属性,导致预测评估结果的曲线下面积(Area Under Curve,AUC)值较低。针对上述现象,提出融合节点重要性的通信系统链路预测方法。提取无特征网络中节点的局部特征,构建节点的时间序列数据。计算每个节点的重要性,利用节点的重要性和时间序列数据,通过特定的算法,获取每个节点的预测值,从而实现无特征网络链路的预测。实验结果表明,该方法预测评估结果的AUC值较高,能够更准确地预测网络中的链路连接。