Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety...Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety. The location node system consists of a mobile node,several fixed nodes,and a sink node,all of whose circuits were designed based on CC2430. A varistor and a RC circuit were used in the reset circuit of a sensor node to guarantee the intrinsic safety by reducing discharge energy,the theoretical analysis of the discharge energy shows that the reset circuit is an intrinsic safety one. The analysis and simulation about the performance of the location node system are discussed,such as network communication delay and packet loss rate,the results show that the highest network communication delay of the system is about 0.11 seconds,and the highest packet loss rate is about 0.13,which assures the location node system has a high reliability,and can locate miners in the underground mine.展开更多
Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mo...Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mon challenges in wireless mobile networks, such as high packet loss rate, medium access competition, unstable wireless bandwidth, and dynamic topology, etc., but also suffers from performance degradation due to traffic congestion at the Road-Side Units (RSUs) that connect the wireline and wireless networks. In order to address the challenging issues related to reliable TCP transmissions in infrastruc- ture based vehicular networks, we propose an RSU based TCP (R-TCP) scheme. For wireline source nodes, R-TCP adopts a novel flow control mechanism to adjust transmission rates according to the status of bottleneck link. Specifically, during the short wireless connec- tion time in Infrastructure based vehicular net- works, R-TCP quickly chooses an ideal trans- mission rate for data transmissions instead of activating the slow start algorithm after the connection is established, and successfully avoids the oscillation of the transmission rate. Simulation results show that R-TCP achieves great advantages than some relate proposals in terms of throughput, end-to-end delay, and packet loss rate.展开更多
基金Projects 20070411065 supported by the China Postdoctoral Science Foundation0801028B by the Jiangsu Postdoctoral Science Research Foundation
文摘Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety. The location node system consists of a mobile node,several fixed nodes,and a sink node,all of whose circuits were designed based on CC2430. A varistor and a RC circuit were used in the reset circuit of a sensor node to guarantee the intrinsic safety by reducing discharge energy,the theoretical analysis of the discharge energy shows that the reset circuit is an intrinsic safety one. The analysis and simulation about the performance of the location node system are discussed,such as network communication delay and packet loss rate,the results show that the highest network communication delay of the system is about 0.11 seconds,and the highest packet loss rate is about 0.13,which assures the location node system has a high reliability,and can locate miners in the underground mine.
基金supported in part by Fundamental Research Funds for the Central Universities of China under Grant(N140405004) partly by National Natural Science Foundation of China(61373159)+1 种基金partly by Educational Committee of Liaoning Province science and technology research projects under Grant (L2013096)partly by Key Laboratory Project Funds of Shenyang Ligong University (4771004kfs03)
文摘Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mon challenges in wireless mobile networks, such as high packet loss rate, medium access competition, unstable wireless bandwidth, and dynamic topology, etc., but also suffers from performance degradation due to traffic congestion at the Road-Side Units (RSUs) that connect the wireline and wireless networks. In order to address the challenging issues related to reliable TCP transmissions in infrastruc- ture based vehicular networks, we propose an RSU based TCP (R-TCP) scheme. For wireline source nodes, R-TCP adopts a novel flow control mechanism to adjust transmission rates according to the status of bottleneck link. Specifically, during the short wireless connec- tion time in Infrastructure based vehicular net- works, R-TCP quickly chooses an ideal trans- mission rate for data transmissions instead of activating the slow start algorithm after the connection is established, and successfully avoids the oscillation of the transmission rate. Simulation results show that R-TCP achieves great advantages than some relate proposals in terms of throughput, end-to-end delay, and packet loss rate.