As an alternative of Internet protocol(IP)multicast,application layer multicast(ALM)is widely used with the advantage of simplicity and flexibility.However,the existing problems of large transmission delay and poor st...As an alternative of Internet protocol(IP)multicast,application layer multicast(ALM)is widely used with the advantage of simplicity and flexibility.However,the existing problems of large transmission delay and poor stability limit the application and development.In this article,to solve these problems,an ALM model based on node potential(NP)and topological index(TI)is proposed.The proposed model considers the factors of node capability and node distance in constructing and maintaining multicast tree to reduce transmission delay and increase stability,and thus it improves the application level in real-time multimedia multicast.The computer simulations prove that the proposed model reduces the ALM transmission delay,increases multicast tree stability effectively,and improves the ALM performance,and therefore it is suitable to apply in large-scale real-time multimedia environment.展开更多
基金National Natural Science Foundation of China(Nos.71171045 and 61801107)。
文摘As an alternative of Internet protocol(IP)multicast,application layer multicast(ALM)is widely used with the advantage of simplicity and flexibility.However,the existing problems of large transmission delay and poor stability limit the application and development.In this article,to solve these problems,an ALM model based on node potential(NP)and topological index(TI)is proposed.The proposed model considers the factors of node capability and node distance in constructing and maintaining multicast tree to reduce transmission delay and increase stability,and thus it improves the application level in real-time multimedia multicast.The computer simulations prove that the proposed model reduces the ALM transmission delay,increases multicast tree stability effectively,and improves the ALM performance,and therefore it is suitable to apply in large-scale real-time multimedia environment.