期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimizing Service Stipulation Uncertainty with Deep Reinforcement Learning for Internet Vehicle Systems
1
作者 Zulqar Nain B.Shahana +3 位作者 Shehzad Ashraf Chaudhry P.Viswanathan M.S.Mekala Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第3期5705-5721,共17页
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)applications.Edge devices enable limited computational capacity and energy availability th... Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)applications.Edge devices enable limited computational capacity and energy availability that hamper end user performance.We designed a novel performance measurement index to gauge a device’s resource capacity.This examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided services.In this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float decisions.Consequently,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the network.Our approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation factor.Our system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks. 展开更多
关键词 Fog computing task allocation measurement models feasible node selection methods performance metrics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部