Voltage security assessment of power system is an important and all-inclusive aspect of power system operation and preventive control actions. Fast and accurate detection of critical components of the power system is ...Voltage security assessment of power system is an important and all-inclusive aspect of power system operation and preventive control actions. Fast and accurate detection of critical components of the power system is one essential approach for preventing the occurrence of voltage collapse phenomenon. Over the years, several approaches for voltage collapse point identification and prevention have been widely studied using the continuous power flow approach, minimum singular value of eigenvalues, Jacobian matrices, and power transfer concept. In this work, critical node (bus) identification based on power system network structure is proposed. In this approach, the power system is treated as a multidimensional graph with several nodes (buses) linked together by the transmission lines. An improved line voltage stability margin estimator which is based on active and reactive power changes in a power system is used as the weight of each transmission line and an adaptation of the degree of centrality approach is used to determine the criticality of the system buses. A comparative analysis with other bus voltage stability indices is presented to test the suitability of the proposed approach using the IEEE 14, 30, 57 and 118 bus test systems.展开更多
Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigate...Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigated.It reveals that the recovery linear energy transfer threshold decreases with the supply voltage reducing,which is quite attractive for dynamic voltage scaling and subthreshold circuit radiation-hardened design.Additionally,the effect of supply voltage on charge collection is also investigated.It is concluded that the supply voltage mainly affects the bipolar gain of the parasitical bipolar junction transistor(BJT) and the existence of the source plays an important role in supply voltage variation.展开更多
Residential photovoltaic (PV) systems connected to the grid are used for self-consumption. Any surplus production is fed into the grid and contributes to improving the voltage. Several techniques are developed to mode...Residential photovoltaic (PV) systems connected to the grid are used for self-consumption. Any surplus production is fed into the grid and contributes to improving the voltage. Several techniques are developed to model their connection. However, studies on methods of injecting energy production into the Low Voltage (LV) network are nowadays a problem. This paper proposes a mathematical model to determine the current to be injected and calculate each node’s voltage. The current equation is a recurrence relation with an initial condition. This initial condition is for the case of a single PV system connected to the LV grid. The equation can also be written in matrix form. Similarly, the voltage solution is a recurrence relation. It also has an initial condition for the first node. Both mathematical formulae with the proposed initial conditions are consistent and can be used for the determination of the current and voltage of the different nodes in the grid.展开更多
随着高比例可再生能源在电力系统中的广泛应用,可再生能源的波动性和随机性对电力系统静态电压稳定评估带来挑战,电力系统静态电压稳定域(static voltage stability region,SVSR)可以全面分析和监测电力系统电压稳定性,其关键是快速准...随着高比例可再生能源在电力系统中的广泛应用,可再生能源的波动性和随机性对电力系统静态电压稳定评估带来挑战,电力系统静态电压稳定域(static voltage stability region,SVSR)可以全面分析和监测电力系统电压稳定性,其关键是快速准确地构建稳定域边界。针对传统连续潮流法和非线性规划法计算量大的问题,提出一种基于SVSR边界拓扑性质的SVSR边界构建优化模型,根据边界连续且光滑的性质,由已知边界点通过预测-校正方法直接计算相邻边界点。在此模型基础上提出一种极限诱导分岔识别方法,构建考虑极限诱导分岔的SVSR边界。最后通过算例分析验证了所提方法的可行性和准确性。展开更多
文摘Voltage security assessment of power system is an important and all-inclusive aspect of power system operation and preventive control actions. Fast and accurate detection of critical components of the power system is one essential approach for preventing the occurrence of voltage collapse phenomenon. Over the years, several approaches for voltage collapse point identification and prevention have been widely studied using the continuous power flow approach, minimum singular value of eigenvalues, Jacobian matrices, and power transfer concept. In this work, critical node (bus) identification based on power system network structure is proposed. In this approach, the power system is treated as a multidimensional graph with several nodes (buses) linked together by the transmission lines. An improved line voltage stability margin estimator which is based on active and reactive power changes in a power system is used as the weight of each transmission line and an adaptation of the degree of centrality approach is used to determine the criticality of the system buses. A comparative analysis with other bus voltage stability indices is presented to test the suitability of the proposed approach using the IEEE 14, 30, 57 and 118 bus test systems.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 60836004)Hunan Provincial Innovation Foundation for Postgraduates,China (Grant No. CX2011B026)
文摘Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigated.It reveals that the recovery linear energy transfer threshold decreases with the supply voltage reducing,which is quite attractive for dynamic voltage scaling and subthreshold circuit radiation-hardened design.Additionally,the effect of supply voltage on charge collection is also investigated.It is concluded that the supply voltage mainly affects the bipolar gain of the parasitical bipolar junction transistor(BJT) and the existence of the source plays an important role in supply voltage variation.
文摘Residential photovoltaic (PV) systems connected to the grid are used for self-consumption. Any surplus production is fed into the grid and contributes to improving the voltage. Several techniques are developed to model their connection. However, studies on methods of injecting energy production into the Low Voltage (LV) network are nowadays a problem. This paper proposes a mathematical model to determine the current to be injected and calculate each node’s voltage. The current equation is a recurrence relation with an initial condition. This initial condition is for the case of a single PV system connected to the LV grid. The equation can also be written in matrix form. Similarly, the voltage solution is a recurrence relation. It also has an initial condition for the first node. Both mathematical formulae with the proposed initial conditions are consistent and can be used for the determination of the current and voltage of the different nodes in the grid.
文摘随着高比例可再生能源在电力系统中的广泛应用,可再生能源的波动性和随机性对电力系统静态电压稳定评估带来挑战,电力系统静态电压稳定域(static voltage stability region,SVSR)可以全面分析和监测电力系统电压稳定性,其关键是快速准确地构建稳定域边界。针对传统连续潮流法和非线性规划法计算量大的问题,提出一种基于SVSR边界拓扑性质的SVSR边界构建优化模型,根据边界连续且光滑的性质,由已知边界点通过预测-校正方法直接计算相邻边界点。在此模型基础上提出一种极限诱导分岔识别方法,构建考虑极限诱导分岔的SVSR边界。最后通过算例分析验证了所提方法的可行性和准确性。