The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. T...The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.展开更多
The effects of rare earths with different contents on anti-degradation of Y base heavy rare earths-magnesium and cerium base light rare earths-magnesium nodular cast iron were studied. Curves of the relationship betwe...The effects of rare earths with different contents on anti-degradation of Y base heavy rare earths-magnesium and cerium base light rare earths-magnesium nodular cast iron were studied. Curves of the relationship between the spheroidization grade of liguid iron treated by different nodulizers and holding time were obtained. The results show that the more the remains of the rare earth, the longer the anti-degradation time, the liquid iron was treated either by Y-Mg-Si or by Ce-Mg-Si nodulizer. When the rare earth remains are above certain quantity, the spheroidization grade starts to decline. When liquid iron treated by either Y-Mg-Si or Ce-Mg-Si nodulizer with proper remains of rare earths about 0.04% 0.06%(mass fraction), the anti-degradation is the best, and the remains of Mg being about 0.04% -0.07% (mass fraction). Rare earths-Mg nodulizer with moderate RE remains is better than that of Mg-Si nodulizer in anti-degradation property. However, Y-Mg-Si nodulizer with moderate remins of Re is better than Ce-Mg-Si nodulizer. Sometimes Ce-Mg- Si nodulizer can be used for the production of heavy section nodular cast iron.展开更多
The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors af...The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.展开更多
Ferritic spheroidal graphite irons with nodularity from 72%to 96%were prepared.The relationship between the nodularity and the mechanical properties of the ferritic spheroidal graphite iron was investigated.The effect...Ferritic spheroidal graphite irons with nodularity from 72%to 96%were prepared.The relationship between the nodularity and the mechanical properties of the ferritic spheroidal graphite iron was investigated.The effect of nodularity on the mechanical properties and tensile fracture of the cast iron were studied.Results showed that the tensile strength Rm,yield strength Rp0.2,elongation to failure A5,and impact energy KV2 of the cast iron had a good linear relationship with its nodularity.Nodularity and annealing treatment would obviously affect the fracture characteristics of ferritic spheroidal graphite iron.The annealed ferritic spheroidal graphite iron with 93%nodularity showed a completely ductile rupture.With the decrease of nodularity from 93%to 72%,the cleavage fracture area ratio increased gradually from 0%to 8.3%.Compared with as-cast ferritic spheroidal graphite iron,annealing treatment reduced the cleavage fracture area of the ferritic spheroidal graphite iron.展开更多
In addition to mold rigidity and metallurgical quality of iron melting, the main reasons causing riser feeding failure in nodular iron castings production are: (a) open and cold metal flowing-over risers were adopted;...In addition to mold rigidity and metallurgical quality of iron melting, the main reasons causing riser feeding failure in nodular iron castings production are: (a) open and cold metal flowing-over risers were adopted; (b) riser location was not proper; (c) riser was too small or/and not enough high; (d) ingates did not freeze up instantly as soon as pouring finished; (e) there’re isolated hot spots in the casting which are not connected with feeding channel of the riser; (f) the feeding channel of castings with small size and thin sections is too narrow for feeding liquid to enter casting; and so on.展开更多
Size distribution and precipitation of VC particles in ferritic nodular cast iron have been examined by techniques of ultrasonic screening,small angle X-ray scattering and chemical dissolution.The VC particles are siz...Size distribution and precipitation of VC particles in ferritic nodular cast iron have been examined by techniques of ultrasonic screening,small angle X-ray scattering and chemical dissolution.The VC particles are sized over a wide range.The superfine ones, dispersed in the ferritic matrix,are the majority.A saturated dispersion with ultrafine VC particles may be approached as the V content increasing in the iron.Thi5 seems to play an important role in the precipitation strengthening for ferritic nodular cast iron.展开更多
The morphology,size and composition of intermetallic compound at the interface of Al 1050 and nodular cast iron were studied by electron microprobe analysis(EMPA)and scan electron microscopy(SEM),respectively.The bond...The morphology,size and composition of intermetallic compound at the interface of Al 1050 and nodular cast iron were studied by electron microprobe analysis(EMPA)and scan electron microscopy(SEM),respectively.The bond strength of the interface was measured by the tensile tests and the morphology of the fracture surface was observed by SEM.The observation of the interface reveals that there are two distinct morphologies:no intermetallic compound exists in the central area at the interface;while numbers of intermetallic compounds(FexAly)are formed in the peripheral area due to the overfull heat input.The tensile tests indicate that the distribution of strength in radial direction at the interface is inhomogeneous,and the central area of the interface performs greater bond strength than the peripheral area,which proves directly that the FexAly intermetallic compounds have a negative effect on the integration of interface.The morphology on the fracture surface shows that the facture in the central area at the interface has characteristic of the ductile micro-void facture.So it is important to restrain the form of the intermetallic compound to increase the bond strength of the Al 1050 and nodular cast iron by optimizing welding parameters and the geometry of components.展开更多
The graphite phase has been extracted from the nodular cast iron to measure the concentration of trace element in it. The impurity phase was removed from the extracted matter by dissolving it with HCl and HCl+H<sub...The graphite phase has been extracted from the nodular cast iron to measure the concentration of trace element in it. The impurity phase was removed from the extracted matter by dissolving it with HCl and HCl+H<sub>2</sub>O<sub>2</sub> to get the pure graphite phase. PIXE measurements were performed with thick targets of the pure graphite phase. Differences in the trace element concentrations between the graphite phase and the matrix have been observed. The effect of Ti and As in graphite phase on the nodularization rate and the mechanical properties have been studied.展开更多
In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute an...In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled.展开更多
The volumetric changes of castings and dimension changes of mould cavity occurring during liquid cooling and solidification of nodular iron castings were described. The feasibility and prerequisites to realize feeder-...The volumetric changes of castings and dimension changes of mould cavity occurring during liquid cooling and solidification of nodular iron castings were described. The feasibility and prerequisites to realize feeder-less production of nodular iron castings was analyzed and proved with practical examples. It was pointed out that the feeder-less foundry method is by no means a feeding-less method, and it was emphasized that adopting high carbon equivalent, high rigidity mould, simultaneous and synchronous solidification, and intensifying cooling capacity of the mould to increase feeding effect of the gating system are important to successfully realize feeder-less production of nodular iron castings.展开更多
Nickel-iron type cast iron electrodes are widely used for welding QT600-3 nodular iron.Nevertheless,the research work has demonstrated that the strength of these heterogeneous welded joints is low.In this paper,the un...Nickel-iron type cast iron electrodes are widely used for welding QT600-3 nodular iron.Nevertheless,the research work has demonstrated that the strength of these heterogeneous welded joints is low.In this paper,the uni- axial tension of the joints is studied by the Moire fringe method,and the dis- placement,strain and stress in the total fields are obtaind.Based on the uneven distribution of strain and stress,the reason of crack initiation and propagation is discussed.Through examining the appearance of the fracture by scanning elec- tron microscope,a lot of spherical substances distributed on the fracture surface are found,which may be another reason leading to cracking of the welded joint under the lower tensile stress.These new findings will help to improve the properties of nickel-iron type cast iron electrodes and the strength of the welded joint.展开更多
Carbide precipitates in Thin Wall Ductile Iron (TWDI) used for automotive applications needs to be eliminated or reduced for improved strength, ductility, crack propagation resistance and good machinability. Ductile i...Carbide precipitates in Thin Wall Ductile Iron (TWDI) used for automotive applications needs to be eliminated or reduced for improved strength, ductility, crack propagation resistance and good machinability. Ductile iron thin section profiles (≤3 mm) present danger of massive carbide precipitations in the as-cast sample. Precipitated carbide phase is brittle and negatively affects the mechanical properties of the iron matrix. The suppression of carbide formation is associated with the nucleating properties of the nodularizer and innoculant alloys. This treatment is vital in ensuring that carbide precipitation, flake graphite structure and non-nodular graphite phases are reduced or completely eliminated in the TWDI castings. Therefore, the temperature and technique of treatment would influence the yield of the process, and ultimately the mechanical properties. In this study, the effect of nodularization and inoculation treatment temperature on the microstructure and mechanical properties of TWDI castings is examined. The results indicate that good nodularity and nodule count with better percent elongations are achieved using low treatment temperatures in descending order of 1490°C, 1470°C and 1450°C, but have negative effect at lower treatment temperature of 1430°C. However, TWDI castings have superior properties in terms of nodule counts and nodularity at 1450°C. Treatment temperature does not produce significant influence on ultimate tensile strength (UTS) and hardness of TWDI castings. TWDI castings show poor nodularity, nodule count and ductility at higher inoculation treatment temperatures of 1550°C, 1530°C and 1510°C.展开更多
This paper gives a brief introduction to the four research methods for the study on thermal conductivity of cast irons,including experimental measurement,statistical analysis,effective medium theory and numerical simu...This paper gives a brief introduction to the four research methods for the study on thermal conductivity of cast irons,including experimental measurement,statistical analysis,effective medium theory and numerical simulation.Recent studies on the thermal conductivity of various cast irons are reviewed through the influence of alloying elements,structural constituents,and temperature.The addition of alloying elements is the main reason that restricts the thermal conductivity of cast irons,especially spheroidal graphite cast iron.The connectivity of graphite has a significant effect on the thermal conductivity of flake and compacted graphite cast irons,semiquantitative and quantitative analysis of this factor is a key and difficult point in the study of thermal conductivity of cast irons.The thermal conductivities of different types of cast irons show varying degrees of dependence on temperature.This phenomenon is the combination of graphite and matrix,rather than just depending on graphite morphology.The study of the relationship between individual phase and temperature is the focus of future research.These summaries and discussions may provide reference and guidance for the future research and development of high thermal conductivity cast irons.展开更多
The demands for improved engine performance,fuel economy,durability,and lower emissions provide a continual challenge for engine designers.The use of Compacted Graphite Iron(CGI)has been established for successful hig...The demands for improved engine performance,fuel economy,durability,and lower emissions provide a continual challenge for engine designers.The use of Compacted Graphite Iron(CGI)has been established for successful high volume series production in the passenger vehicle,commercial vehicle and industrial power sectors over the last decade.The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes,in China and globally.The production window range for stable CGI is narrow and constantly moving.Therefore,any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings.The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity,without risking the formation of flake graphite.The technology is currently being used in high volume Chinese foundry production.The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.展开更多
Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, w...Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than an- nealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was character- ized by the presence of dimples.展开更多
According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular c...According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent,and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained.The damage threshold of nodular cast iron increases with nodularity,but it is below the yield strength,which provides reference significance to the design of machinery structure and the choice of materials.The critical damage variable is not related to the nodularity,which is about 0. 060-0. 068.展开更多
The dependence of nodularization of graphite upon Ce content in RE bearing nodular cast iron,prepared by directional solidification,has been investigated by electrolytic extraction-radioisotope assay analysis of Ce in...The dependence of nodularization of graphite upon Ce content in RE bearing nodular cast iron,prepared by directional solidification,has been investigated by electrolytic extraction-radioisotope assay analysis of Ce in each phase of the iron together with measurement of nodulized graphite.Results show that the Ce occurs mainly as alloyed form. In the graphite phase,the Ce content is believed to be characterization of nodularization.The graphite would completely nodulized only the Ce is over a certain content in graphite phase.展开更多
EN-GJS-450-10 ductile cast iron was produced with and without vibration to evaluate microstructural features. To investigate the effect of vibration, a reference, and two different castings having amplitudes of 0.9 mm...EN-GJS-450-10 ductile cast iron was produced with and without vibration to evaluate microstructural features. To investigate the effect of vibration, a reference, and two different castings having amplitudes of 0.9 mm and 1.8 mm were cast with a fixed vibration frequency of 50 Hz. The nodule count (density), form (type), size distribution, nodularity, and the fraction of graphite, percentages of both ferrite and pearlite phases, length of ferrite shell, and pore, were evaluated via optical microscopy using an image analysis software. It is observed that the microstructure of the cast iron is more uniform by vibrational casting than that by non-vibrational casting. Additionally, mechanical vibration enhances nodule count and nodularity, also, more ferritic matrix could be obtained after the application of vibration. Nodule count and nodularity of vibrational casting with 1.8 mm amplitude increased from 226 nodule per mm2 and 80% to 311 nodule per mm2 and 86.5% of non-vibrational casting. Percentages of ferrite and graphite area dramatically improved from 24% and 16.5% for non-vibrational casting to 57% and 22.3% for vibrational casting with 1.8 mm amplitude, whereas the percentages of pearlite and pores decreased significantly from 56.1% and 5% to 20% and 1%, respectively.展开更多
The development of computer picture processing technique in metallography analysis is dealed with and a picture processing procedure fit to metallography analysis is developed. The image processing of nodular cast iro...The development of computer picture processing technique in metallography analysis is dealed with and a picture processing procedure fit to metallography analysis is developed. The image processing of nodular cast iron is carried out with this system展开更多
基金financially supported by the Key Project of China National Erzhong Group Co.(No.2012zx04010-081)
文摘The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.
文摘The effects of rare earths with different contents on anti-degradation of Y base heavy rare earths-magnesium and cerium base light rare earths-magnesium nodular cast iron were studied. Curves of the relationship between the spheroidization grade of liguid iron treated by different nodulizers and holding time were obtained. The results show that the more the remains of the rare earth, the longer the anti-degradation time, the liquid iron was treated either by Y-Mg-Si or by Ce-Mg-Si nodulizer. When the rare earth remains are above certain quantity, the spheroidization grade starts to decline. When liquid iron treated by either Y-Mg-Si or Ce-Mg-Si nodulizer with proper remains of rare earths about 0.04% 0.06%(mass fraction), the anti-degradation is the best, and the remains of Mg being about 0.04% -0.07% (mass fraction). Rare earths-Mg nodulizer with moderate RE remains is better than that of Mg-Si nodulizer in anti-degradation property. However, Y-Mg-Si nodulizer with moderate remins of Re is better than Ce-Mg-Si nodulizer. Sometimes Ce-Mg- Si nodulizer can be used for the production of heavy section nodular cast iron.
文摘The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.
基金Fundamental Research Funds for the Central Universities,China(Grant No.2013B18020459).
文摘Ferritic spheroidal graphite irons with nodularity from 72%to 96%were prepared.The relationship between the nodularity and the mechanical properties of the ferritic spheroidal graphite iron was investigated.The effect of nodularity on the mechanical properties and tensile fracture of the cast iron were studied.Results showed that the tensile strength Rm,yield strength Rp0.2,elongation to failure A5,and impact energy KV2 of the cast iron had a good linear relationship with its nodularity.Nodularity and annealing treatment would obviously affect the fracture characteristics of ferritic spheroidal graphite iron.The annealed ferritic spheroidal graphite iron with 93%nodularity showed a completely ductile rupture.With the decrease of nodularity from 93%to 72%,the cleavage fracture area ratio increased gradually from 0%to 8.3%.Compared with as-cast ferritic spheroidal graphite iron,annealing treatment reduced the cleavage fracture area of the ferritic spheroidal graphite iron.
文摘In addition to mold rigidity and metallurgical quality of iron melting, the main reasons causing riser feeding failure in nodular iron castings production are: (a) open and cold metal flowing-over risers were adopted; (b) riser location was not proper; (c) riser was too small or/and not enough high; (d) ingates did not freeze up instantly as soon as pouring finished; (e) there’re isolated hot spots in the casting which are not connected with feeding channel of the riser; (f) the feeding channel of castings with small size and thin sections is too narrow for feeding liquid to enter casting; and so on.
文摘Size distribution and precipitation of VC particles in ferritic nodular cast iron have been examined by techniques of ultrasonic screening,small angle X-ray scattering and chemical dissolution.The VC particles are sized over a wide range.The superfine ones, dispersed in the ferritic matrix,are the majority.A saturated dispersion with ultrafine VC particles may be approached as the V content increasing in the iron.Thi5 seems to play an important role in the precipitation strengthening for ferritic nodular cast iron.
基金Project supported by the985Program of Jilin University,China
文摘The morphology,size and composition of intermetallic compound at the interface of Al 1050 and nodular cast iron were studied by electron microprobe analysis(EMPA)and scan electron microscopy(SEM),respectively.The bond strength of the interface was measured by the tensile tests and the morphology of the fracture surface was observed by SEM.The observation of the interface reveals that there are two distinct morphologies:no intermetallic compound exists in the central area at the interface;while numbers of intermetallic compounds(FexAly)are formed in the peripheral area due to the overfull heat input.The tensile tests indicate that the distribution of strength in radial direction at the interface is inhomogeneous,and the central area of the interface performs greater bond strength than the peripheral area,which proves directly that the FexAly intermetallic compounds have a negative effect on the integration of interface.The morphology on the fracture surface shows that the facture in the central area at the interface has characteristic of the ductile micro-void facture.So it is important to restrain the form of the intermetallic compound to increase the bond strength of the Al 1050 and nodular cast iron by optimizing welding parameters and the geometry of components.
文摘The graphite phase has been extracted from the nodular cast iron to measure the concentration of trace element in it. The impurity phase was removed from the extracted matter by dissolving it with HCl and HCl+H<sub>2</sub>O<sub>2</sub> to get the pure graphite phase. PIXE measurements were performed with thick targets of the pure graphite phase. Differences in the trace element concentrations between the graphite phase and the matrix have been observed. The effect of Ti and As in graphite phase on the nodularization rate and the mechanical properties have been studied.
文摘In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled.
文摘The volumetric changes of castings and dimension changes of mould cavity occurring during liquid cooling and solidification of nodular iron castings were described. The feasibility and prerequisites to realize feeder-less production of nodular iron castings was analyzed and proved with practical examples. It was pointed out that the feeder-less foundry method is by no means a feeding-less method, and it was emphasized that adopting high carbon equivalent, high rigidity mould, simultaneous and synchronous solidification, and intensifying cooling capacity of the mould to increase feeding effect of the gating system are important to successfully realize feeder-less production of nodular iron castings.
文摘Nickel-iron type cast iron electrodes are widely used for welding QT600-3 nodular iron.Nevertheless,the research work has demonstrated that the strength of these heterogeneous welded joints is low.In this paper,the uni- axial tension of the joints is studied by the Moire fringe method,and the dis- placement,strain and stress in the total fields are obtaind.Based on the uneven distribution of strain and stress,the reason of crack initiation and propagation is discussed.Through examining the appearance of the fracture by scanning elec- tron microscope,a lot of spherical substances distributed on the fracture surface are found,which may be another reason leading to cracking of the welded joint under the lower tensile stress.These new findings will help to improve the properties of nickel-iron type cast iron electrodes and the strength of the welded joint.
文摘Carbide precipitates in Thin Wall Ductile Iron (TWDI) used for automotive applications needs to be eliminated or reduced for improved strength, ductility, crack propagation resistance and good machinability. Ductile iron thin section profiles (≤3 mm) present danger of massive carbide precipitations in the as-cast sample. Precipitated carbide phase is brittle and negatively affects the mechanical properties of the iron matrix. The suppression of carbide formation is associated with the nucleating properties of the nodularizer and innoculant alloys. This treatment is vital in ensuring that carbide precipitation, flake graphite structure and non-nodular graphite phases are reduced or completely eliminated in the TWDI castings. Therefore, the temperature and technique of treatment would influence the yield of the process, and ultimately the mechanical properties. In this study, the effect of nodularization and inoculation treatment temperature on the microstructure and mechanical properties of TWDI castings is examined. The results indicate that good nodularity and nodule count with better percent elongations are achieved using low treatment temperatures in descending order of 1490°C, 1470°C and 1450°C, but have negative effect at lower treatment temperature of 1430°C. However, TWDI castings have superior properties in terms of nodule counts and nodularity at 1450°C. Treatment temperature does not produce significant influence on ultimate tensile strength (UTS) and hardness of TWDI castings. TWDI castings show poor nodularity, nodule count and ductility at higher inoculation treatment temperatures of 1550°C, 1530°C and 1510°C.
基金financial support by the National Natural Science Foundationof China(Grant No.51371104)。
文摘This paper gives a brief introduction to the four research methods for the study on thermal conductivity of cast irons,including experimental measurement,statistical analysis,effective medium theory and numerical simulation.Recent studies on the thermal conductivity of various cast irons are reviewed through the influence of alloying elements,structural constituents,and temperature.The addition of alloying elements is the main reason that restricts the thermal conductivity of cast irons,especially spheroidal graphite cast iron.The connectivity of graphite has a significant effect on the thermal conductivity of flake and compacted graphite cast irons,semiquantitative and quantitative analysis of this factor is a key and difficult point in the study of thermal conductivity of cast irons.The thermal conductivities of different types of cast irons show varying degrees of dependence on temperature.This phenomenon is the combination of graphite and matrix,rather than just depending on graphite morphology.The study of the relationship between individual phase and temperature is the focus of future research.These summaries and discussions may provide reference and guidance for the future research and development of high thermal conductivity cast irons.
文摘The demands for improved engine performance,fuel economy,durability,and lower emissions provide a continual challenge for engine designers.The use of Compacted Graphite Iron(CGI)has been established for successful high volume series production in the passenger vehicle,commercial vehicle and industrial power sectors over the last decade.The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes,in China and globally.The production window range for stable CGI is narrow and constantly moving.Therefore,any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings.The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity,without risking the formation of flake graphite.The technology is currently being used in high volume Chinese foundry production.The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.
基金the Board of Research in Nuclear Science (Project Grant No. 2011/36/18-BRNS), India for carrying out this investigation
文摘Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than an- nealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was character- ized by the presence of dimples.
基金the Education Committee of Hebei for the financial support ( B2003102 )
文摘According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent,and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained.The damage threshold of nodular cast iron increases with nodularity,but it is below the yield strength,which provides reference significance to the design of machinery structure and the choice of materials.The critical damage variable is not related to the nodularity,which is about 0. 060-0. 068.
文摘The dependence of nodularization of graphite upon Ce content in RE bearing nodular cast iron,prepared by directional solidification,has been investigated by electrolytic extraction-radioisotope assay analysis of Ce in each phase of the iron together with measurement of nodulized graphite.Results show that the Ce occurs mainly as alloyed form. In the graphite phase,the Ce content is believed to be characterization of nodularization.The graphite would completely nodulized only the Ce is over a certain content in graphite phase.
文摘EN-GJS-450-10 ductile cast iron was produced with and without vibration to evaluate microstructural features. To investigate the effect of vibration, a reference, and two different castings having amplitudes of 0.9 mm and 1.8 mm were cast with a fixed vibration frequency of 50 Hz. The nodule count (density), form (type), size distribution, nodularity, and the fraction of graphite, percentages of both ferrite and pearlite phases, length of ferrite shell, and pore, were evaluated via optical microscopy using an image analysis software. It is observed that the microstructure of the cast iron is more uniform by vibrational casting than that by non-vibrational casting. Additionally, mechanical vibration enhances nodule count and nodularity, also, more ferritic matrix could be obtained after the application of vibration. Nodule count and nodularity of vibrational casting with 1.8 mm amplitude increased from 226 nodule per mm2 and 80% to 311 nodule per mm2 and 86.5% of non-vibrational casting. Percentages of ferrite and graphite area dramatically improved from 24% and 16.5% for non-vibrational casting to 57% and 22.3% for vibrational casting with 1.8 mm amplitude, whereas the percentages of pearlite and pores decreased significantly from 56.1% and 5% to 20% and 1%, respectively.
文摘The development of computer picture processing technique in metallography analysis is dealed with and a picture processing procedure fit to metallography analysis is developed. The image processing of nodular cast iron is carried out with this system