To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constr...To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constraints in event space is presented, secondly, the Noether's theorem and the Noether's inverse theorem for the nonholonomic systems of non_Chetaev's type with unilateral constraints in event space are studied and obtained, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, finally, an example is given to illustrate the application of the result.展开更多
The existing various couple stress theories have been carefully restudied.The purpose is to propose a coupled Noether's theorem and to reestablish rather complete conservation laws and balance equations for co...The existing various couple stress theories have been carefully restudied.The purpose is to propose a coupled Noether's theorem and to reestablish rather complete conservation laws and balance equations for couple stress elastodynamics. The new concrete forms of various conservation laws of couple stress elasticity are derived. The precise nature of these conservation laws which result from the given invariance requirements are established. Various special cases are reduced and the results of micropolar continua may be naturally transited from the results presented in this paper.展开更多
The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding ...The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.展开更多
This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dyn...This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.展开更多
The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations wit...The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.展开更多
Noether’s theorem[1],relating the symmetry of a physical system to its constant of motion,is a fundamental physical law. It has been shown that the expectation value of a time-independent operator is a constant of mo...Noether’s theorem[1],relating the symmetry of a physical system to its constant of motion,is a fundamental physical law. It has been shown that the expectation value of a time-independent operator is a constant of motion if it commutes with the Hermitian Hamiltonian. However,applying Noether’s theorem to open systems and obtaining the corresponding conserved quantities are still tricky.展开更多
Noether’s theorem is one of the fundamental laws in physics,relating the symmetry of a physical system to its constant of motion and conservation law.On the other hand,there exist a variety of non-Hermitian parity-ti...Noether’s theorem is one of the fundamental laws in physics,relating the symmetry of a physical system to its constant of motion and conservation law.On the other hand,there exist a variety of non-Hermitian parity-time(PT)-symmetric systems,which exhibit novel quantum properties and have attracted increasing interest.In this work,we extend Noether’s theorem to a class of significant PT-symmetry systems for which the eigenvalues of the PT-symmetry Hamiltonian HPTchange from purely real numbers to purely imaginary numbers,and introduce a generalized expectation value of an operator based on biorthogonal quantum mechanics.We find that the generalized expectation value of a time-independent operator is a constant of motion when the operator presents a standard symmetry in the PT-symmetry unbroken regime,or a chiral symmetry in the PT-symmetry broken regime.In addition,we experimentally investigate the extended Noether’s theorem in PT-symmetry single-qubit and two-qubit systems using an optical setup.Our experiment demonstrates the existence of the constant of motion and reveals how this constant of motion can be used to judge whether the PT-symmetry of a system is broken.Furthermore,a novel phenomenon of masking quantum information is first observed in a PT-symmetry two-qubit system.This study not only contributes to full understanding of the relation between symmetry and conservation law in PT-symmetry physics,but also has potential applications in quantum information theory and quantum communication protocols.展开更多
We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-l...We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.展开更多
We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Dio...We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.展开更多
Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely...Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.展开更多
Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with...Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.展开更多
In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some ...In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.展开更多
The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infini...The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold ...In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold andδ>1(n-1)p2/4n[p-1+(p-1)2kp],we prove a vanishing theorem for p-harmonicℓ-forms.展开更多
Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opport...Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opportunities for students’classroom performance as well as lack of formative evaluation of students.In order to solve the phenomenon,this paper analyzes and explains how to promote teaching based on the Teaching for Robust Understanding(TRU)evaluation framework with the goal of focusing on the development of all students,taking the teaching design of The Cosine Theorem as an example,and provides ideas and methods for first-line high school mathematics teachers.展开更多
The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTE...The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTENCE and the DEFINITION by NJIKI of two INNOVATIVE, IMPORTANT and TEACHABLE operations of addition or additive operations, in ℚ, marked ⊕and +α,β, and taken as VECTORIAL, TRIANGULAR, of THREE or PROPORTIONAL operations and in order to make THEM not be different from the RATIONAL ONE, +, but to bring much more and new information on fractions, and, by extension in ℝand ℂ. And the very NJIKI’s fundamental THEOREM-DEFINITION having many APPLICATIONS in the everyday life of the HUMAN BEINGS and without talking about computer sciences, henceforth being supplied with very interesting new ALGORITHMS. And as for the work done in the research, it will be waiting for its extension to be done after publication and along with the research results concerned.展开更多
Let C be a smooth projective curve over C, and K be the canonical line bundle. A well-known Theorem of Noether says that if C is not a hyperelliptic curve, then the map H^o(C,K)(?)H^o(C,K)→H^o(C, 2K) is surjective,wh...Let C be a smooth projective curve over C, and K be the canonical line bundle. A well-known Theorem of Noether says that if C is not a hyperelliptic curve, then the map H^o(C,K)(?)H^o(C,K)→H^o(C, 2K) is surjective,which means that K is normally generated.展开更多
The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep...The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep characteristics of the viscoplastic stage from the perspective of internal energy to analyze the mechanism of rock creep failure and determine the threshold of accelerated creep initiation.Based on the kinetic energy theorem,Perzyna viscoplastic theory,and the Nishihara model,a unified creep constitutive model that can describe the whole process of decaying creep,stable creep,and accelerated creep is established.Results reveal that the energy consumption and creep damage in the process of creep loading mainly come from the internal energy changes of geotechnical materials.The established creep model can not only describe the viscoelasticeplastic creep characteristics of rock,but also reflect the relationship between rock energy and creep deformation change.In addition,the research results provide a new method for determining the critical point of creep deformation and a new idea for studying the creep model and creep mechanical properties.展开更多
Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysi...Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.展开更多
文摘To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constraints in event space is presented, secondly, the Noether's theorem and the Noether's inverse theorem for the nonholonomic systems of non_Chetaev's type with unilateral constraints in event space are studied and obtained, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, finally, an example is given to illustrate the application of the result.
文摘The existing various couple stress theories have been carefully restudied.The purpose is to propose a coupled Noether's theorem and to reestablish rather complete conservation laws and balance equations for couple stress elastodynamics. The new concrete forms of various conservation laws of couple stress elasticity are derived. The precise nature of these conservation laws which result from the given invariance requirements are established. Various special cases are reduced and the results of micropolar continua may be naturally transited from the results presented in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXZZ11 0949)
文摘The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXLX11_0961)
文摘This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.
基金National Natural Science Foundations of China(Nos.11572212,11272227,10972151)the Innovation Program for Scientific Research of Nanjing University of Science and Technology,Chinathe Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(No.KYLX15_0405)
文摘The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.
文摘Noether’s theorem[1],relating the symmetry of a physical system to its constant of motion,is a fundamental physical law. It has been shown that the expectation value of a time-independent operator is a constant of motion if it commutes with the Hermitian Hamiltonian. However,applying Noether’s theorem to open systems and obtaining the corresponding conserved quantities are still tricky.
基金supported by the National Natural Science Foundation of China(Grant Nos.12264040,12204311,11804228,11865013,and U21A20436)the Jiangxi Natural Science Foundation(Grant Nos.20212BAB211018,20192ACBL20051)+8 种基金the Project of Jiangxi Province Higher Educational Science and Technology Program(Grant Nos.GJJ190891,and GJJ211735)the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B03-0326001)supported in part by the Nippon Telegraph and Telephone(NTT)Corporation Researchthe Japan Science and Technology(JST)Agency[via the Quantum Leap Flagship Program(Q-LEAP)Moonshot R&D Grant Number JPMJMS2061]the Japan Society for the Promotion of Science(JSPS)[via the Grants-in-Aid for Scientific Research(KAKENHI)Grant No.JP20H00134]the Army Research Office(ARO)(Grant No.W911NF-18-1-0358)the Asian Office of Aerospace Research and Development(AOARD)(Grant No.FA2386-20-1-4069)the Foundational Questions Institute Fund(FQXi)(Grant No.FQXi-IAF19-06)。
文摘Noether’s theorem is one of the fundamental laws in physics,relating the symmetry of a physical system to its constant of motion and conservation law.On the other hand,there exist a variety of non-Hermitian parity-time(PT)-symmetric systems,which exhibit novel quantum properties and have attracted increasing interest.In this work,we extend Noether’s theorem to a class of significant PT-symmetry systems for which the eigenvalues of the PT-symmetry Hamiltonian HPTchange from purely real numbers to purely imaginary numbers,and introduce a generalized expectation value of an operator based on biorthogonal quantum mechanics.We find that the generalized expectation value of a time-independent operator is a constant of motion when the operator presents a standard symmetry in the PT-symmetry unbroken regime,or a chiral symmetry in the PT-symmetry broken regime.In addition,we experimentally investigate the extended Noether’s theorem in PT-symmetry single-qubit and two-qubit systems using an optical setup.Our experiment demonstrates the existence of the constant of motion and reveals how this constant of motion can be used to judge whether the PT-symmetry of a system is broken.Furthermore,a novel phenomenon of masking quantum information is first observed in a PT-symmetry two-qubit system.This study not only contributes to full understanding of the relation between symmetry and conservation law in PT-symmetry physics,but also has potential applications in quantum information theory and quantum communication protocols.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61877054,12031004,and 12271474).
文摘We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.
文摘We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.
基金supported by the National Natural Science Foundation of China(12131015,12071422).
文摘Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.
文摘Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.
基金Supported in part by the National Social Science Foundation of China(19BTJ020)。
文摘In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.
文摘The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
文摘In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold andδ>1(n-1)p2/4n[p-1+(p-1)2kp],we prove a vanishing theorem for p-harmonicℓ-forms.
基金Henan Province 2022 Teacher Education Curriculum Reform Research Project:Research on Improving the Teaching Practice Ability of Mathematics Normal University Students under the OBE Concept(Project number:2022-JSJYZD-009)A Study on the Measurement and Development of Mathematics Core Literacy for Secondary School Students,Doctoral Research Initiation Fee of Henan Normal University(Project number:20230234)Henan Normal University Graduate Quality Course Program,Mathematical Planning I(Project number:YJS2022KC02)。
文摘Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opportunities for students’classroom performance as well as lack of formative evaluation of students.In order to solve the phenomenon,this paper analyzes and explains how to promote teaching based on the Teaching for Robust Understanding(TRU)evaluation framework with the goal of focusing on the development of all students,taking the teaching design of The Cosine Theorem as an example,and provides ideas and methods for first-line high school mathematics teachers.
文摘The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTENCE and the DEFINITION by NJIKI of two INNOVATIVE, IMPORTANT and TEACHABLE operations of addition or additive operations, in ℚ, marked ⊕and +α,β, and taken as VECTORIAL, TRIANGULAR, of THREE or PROPORTIONAL operations and in order to make THEM not be different from the RATIONAL ONE, +, but to bring much more and new information on fractions, and, by extension in ℝand ℂ. And the very NJIKI’s fundamental THEOREM-DEFINITION having many APPLICATIONS in the everyday life of the HUMAN BEINGS and without talking about computer sciences, henceforth being supplied with very interesting new ALGORITHMS. And as for the work done in the research, it will be waiting for its extension to be done after publication and along with the research results concerned.
文摘Let C be a smooth projective curve over C, and K be the canonical line bundle. A well-known Theorem of Noether says that if C is not a hyperelliptic curve, then the map H^o(C,K)(?)H^o(C,K)→H^o(C, 2K) is surjective,which means that K is normally generated.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41941018)the Science and Tech-nology Service Network Initiative of the Chinese Academy of Sci-ences(Grant No.KFJSTS-QYZD-174),and the Guangxi Natural Science Foundation(Grant No.2020GXNSFAA159125).
文摘The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep characteristics of the viscoplastic stage from the perspective of internal energy to analyze the mechanism of rock creep failure and determine the threshold of accelerated creep initiation.Based on the kinetic energy theorem,Perzyna viscoplastic theory,and the Nishihara model,a unified creep constitutive model that can describe the whole process of decaying creep,stable creep,and accelerated creep is established.Results reveal that the energy consumption and creep damage in the process of creep loading mainly come from the internal energy changes of geotechnical materials.The established creep model can not only describe the viscoelasticeplastic creep characteristics of rock,but also reflect the relationship between rock energy and creep deformation change.In addition,the research results provide a new method for determining the critical point of creep deformation and a new idea for studying the creep model and creep mechanical properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12272148 and 11772141).
文摘Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.