The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel a...The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.展开更多
A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this for...A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this formula,the impacts of distributed gate resistance and intrinsic channel resistance on noise performance are discussed.Two kinds of noise optimization approaches are performed and applied to the design of a 5 2GHz CMOS LNA.展开更多
In the field of quantum communication,quantum steganography is an important branch of quantum information hiding.In a realistic quantum communication system,quantum noises are unavoidable and will seriously impact the...In the field of quantum communication,quantum steganography is an important branch of quantum information hiding.In a realistic quantum communication system,quantum noises are unavoidable and will seriously impact the safety and reliability of the quantum steganographic system.Therefore,it is very important to analyze the influence of noise on the quantum steganography protocol and how to reduce the effect of noise.This paper takes the quantum steganography protocol proposed in 2010 as an example to analyze the effects of noises on information qubits and secret message qubits in the four primary quantum noise environments.The results show that when the noise factor of one quantum channel noise is known,the size of the noise factor of the other quantum channel can be adjusted accordingly,such as artificially applying noise,so that the influence of noises on the protocol is minimized.In addition,this paper also proposes a method of improving the efficiency of the steganographic protocol in a noisy environment.展开更多
The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varie...The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varied from maximally entangled states to non-maximally entangled states, it is found that the effects of noise channels on the fidelity are nearly equivalent to each other for strong quantum noise. The degree of damage on the fidelity of non-maximally entangled channels is smaller than that of maximally entangled channels. The average fidelity of values larger than 2/3 may be one representation indirectly showing how much the unavoidable quantum noise is.展开更多
To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense codi...Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.展开更多
We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transition...We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transitions at an intermediate and proper channel noise intensity, and the synchronization transitions become strongest when the channel noise intensity is optimal. The neurons can also exhibit synchronization transitions as the channel noise intensity is varied, and this phenomenon is enhanced at around the time delays that can induce the synchronization transitions. It is also found that the synchronization transitions induced by the channel noise are dependent on the coupling strength and the network average degree, and there is an optimal coupling strength or network average degree with which the synchronization transitions become strongest. These results show that by inducing synchronization transitions, the channel noise has a big regulation effect on the synchronization of the neuronal network. These findings could find potential implications for the information transmission in neural systems.展开更多
Flow channels with a variable cross-section are important components of piping system and are widely used in variousfields of engineering.Using afinite element method and modal analysis theory,flow-induced noise,mode ...Flow channels with a variable cross-section are important components of piping system and are widely used in variousfields of engineering.Using afinite element method and modal analysis theory,flow-induced noise,mode shapes,and structure-borne noise in such systems are investigated in this study.The results demonstrate that the maximum displacement and equivalent stress are located in the part with variable cross-sectional area.The aver-age excitation force on theflow channel wall increases with theflow velocity.The maximum excitation force occurs in the range of 0–20 Hz,and then it decreases gradually in the range of 20–1000 Hz.Additionally,as theflow velocity rises from 1 to 3 m/s,the overall sound pressure level associated with theflow-induced noise grows from 49.37 to 66.37 dB.Similarly,the overall sound pressure level associated with the structure-borne noise rises from 40.27 to 72.20 dB.When theflow velocity is increased,the increment of the structure-borne noise is higher than that of theflow-induced noise.展开更多
An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state...An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensionM non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact.展开更多
In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended...In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1K and HE1K, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel(BI-AWGNC).展开更多
In this paper, we propose two physical schemes for teleporting an unknown atomic state through noisy channel in cavity QED. The quantum channel is a noisy one -- a mixed GHZ state, which is more realistic in quantum i...In this paper, we propose two physical schemes for teleporting an unknown atomic state through noisy channel in cavity QED. The quantum channel is a noisy one -- a mixed GHZ state, which is more realistic in quantum information processing. We solve analytically a master equation in the Lindblad form with (L2,z, L3,z, L4,z)-type of noise in cavity Q, ED. A comparison between the two protocols are discussed.展开更多
We consider an iterative phase synchronization scheme based on maximum a posteriori probability algorithm.In classical approaches,the phase noise estimation model considers one sample per symbol at the channel and rec...We consider an iterative phase synchronization scheme based on maximum a posteriori probability algorithm.In classical approaches,the phase noise estimation model considers one sample per symbol at the channel and receiver.However,information theoretic studies suggested use of more than one sample per symbol at the channel and receiver for achieving higher performance.In this article,a soft-information aided iterative receiver is derived,which uses off-the-shelf blocks for detection and demodulation by keeping the complexity of the receiver acceptable.We consider here two samples per symbols at the channel and receiver in a pragmatic paradigm.It is shown that phase noise estimation can be significantly improved at the expense of modest processing overhead.Simulation results are presented for low-density parity check coded quadrature amplitude modulations.Our results show a significant performance improvement for strong phase noise values compared to classical receiver approaches.展开更多
Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal ne...Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers. We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence. Furthermoremore, the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same, regardless of the neuron numbers in the neuronal networks. Therefore for all the neuronal networks with different neuron numbers in the brain, relative weak synaptic conductance (0.1 mS/cm2) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding.展开更多
This paper presents a unified theoretical analysis of the energy detection of Gaussian and M-PSK signals in κ-μ,α-μ,and η-μ fading channels at the output of an energy detector subject to impulsive noise(Bernoul...This paper presents a unified theoretical analysis of the energy detection of Gaussian and M-PSK signals in κ-μ,α-μ,and η-μ fading channels at the output of an energy detector subject to impulsive noise(Bernoulli-Gaussian model). As a result, novel, simple, and accurately approximated expressions for the probability of detection are derived. More precisely, the generalized Gauss-Laguerre quadrature is applied to approximate the probability of detection as a simple finite sum. Monte Carlo simulations corroborate the accuracy and precision of the derived approximations. The results are further extended to cooperative energy detection with hard decision combining information.展开更多
Economic dispatch problem(EDP)is a fundamental optimization problem in power system operation,which aims at minimizing the total generation cost.In fact,the power grid is becoming a cyber-physical power system(CPPS).T...Economic dispatch problem(EDP)is a fundamental optimization problem in power system operation,which aims at minimizing the total generation cost.In fact,the power grid is becoming a cyber-physical power system(CPPS).Therefore,the quality of communication is a key point.In this paper,considering two important factors,i.e.,time delays and channel noises,a fully distributed consensus based algorithm is proposed for solving EDP.The critical maximum allowable upper bounds of heterogeneous communication delays and self-delays are obtained.It should be pointed out that the proposed algorithm can be robust against the time-varying delays and channel noises considering generator constraints.In addition,even with time-varying delays and channel noises,the power balance of supply and demand is not broken during the optimization.Several simulation studies are presented to validate the correctness and superiority of the developed results.展开更多
Nonclassical states play a crucial role in both theoretical and experimental investigations of quantum optics, and there is a wide interest in characterization and quantification of nonclassicality. By exploiting the ...Nonclassical states play a crucial role in both theoretical and experimental investigations of quantum optics, and there is a wide interest in characterization and quantification of nonclassicality. By exploiting the freedom of the parameter s in the s-ordered phase-space distribution introduced by Cahill and Glauber [Phys. Rev. 177, 1882(1969)], we develop a method to reveal and quantify optical nonclassicality via the divided difference of the s-ordered phase-space distribution. Our approach yields naturally a family of quantifiers of optical nonclassicality, which have many desirable properties such as convexity and monotonicity under the Gaussian noise channels. The quantifiers are illustrated by evaluating nonclassicality of several typical states. Two simple and convenient criteria for nonclassicality are established, which in particular certify all nonclassical Gaussian states.展开更多
An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-ca...An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails.展开更多
Quantum secure direct communication is an important mode of quantum communication in which secret messages are securely communicated directly over a quantum channel.Quantum secure direct communication is also a basic ...Quantum secure direct communication is an important mode of quantum communication in which secret messages are securely communicated directly over a quantum channel.Quantum secure direct communication is also a basic cryptographic primitive for constructing other quantum communication tasks,such as quantum authentication and quantum dialog.Here,we report the first experimental demonstration of quantum secure direct communication based on the DL04 protocol and equipped with single-photon frequency coding that explicitly demonstrated block transmission.In our experiment,we provided 16 different frequency channels,equivalent to a nibble of four-bit binary numbers for direct information transmission.The experiment firmly demonstrated the feasibility of quantum secure direct communication in the presence of noise and loss.展开更多
In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In ...In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In this paper, we propose hyperentanglement-assisted hyperdistillation schemes to guarantee the quality of hyper-encoding photon system based on the method of quantum hyper-teleportation, which can increase the success probability of hyperdistillation and reduce the resource consumption. First, we propose a hyperentanglement-assisted single-photon hyperdistillation (HASPHD) scheme for polarization and spatial qubits to get rid of the vacuum state component caused by transmission loss, whose success probability can achieve the optimal one by increasing the efficiency of quantum hyper-teleportation. Subsequently, we present two hyperentanglement-assisted hyperentanglement distillation (HAHED) schemes for photon system to protect hyperentanglement from both transmission loss and quantum channel noise, which can recover the less-entangled mixed state to maximally hyperentangled state for known-parameter and unknown-parameter cases with high success probability and low resource consumption. In these hyperdistillation schemes, the influence of imperfect effects of optical elements can be largely decreased by the quantum hyper-teleportation method. These characters make the hyperentanglement-assisted hyperdistillation schemes have potential application prospects in practical quantum information processing.展开更多
This paper propose a novel noncoherent chaotic com- munication scheme named multiple-input multiple-output correlation-delay-shill- keying (MIMO-CDSK). In this scheme, multiple antennas are employed to strengthen th...This paper propose a novel noncoherent chaotic com- munication scheme named multiple-input multiple-output correlation-delay-shill- keying (MIMO-CDSK). In this scheme, multiple antennas are employed to strengthen the robustness in transmission, and to get more diversity gain. The bit error rate (BER) of the MIMO-CDSK is studied analytically in AWGN channel model and multipath fading channel model. The theory and simulation results show that, the performance gain can be obtained with multiple antennas allocated in the transmitter and receiver. Moreover, it is observed that MIMO-CDSK system can effectively reduce the multipath interference.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-62)the Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX01)Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence(LCNBI)and ZJLab,and the National Natural Science Foundation of China(Grant No.12247101).
文摘The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.
文摘A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this formula,the impacts of distributed gate resistance and intrinsic channel resistance on noise performance are discussed.Two kinds of noise optimization approaches are performed and applied to the design of a 5 2GHz CMOS LNA.
基金This work was supported by the National Natural Science Foundation of China(Nos.61373131,61303039,61232016,61501247)the Six Talent Peaks Project of Jiangsu Province(Grant No.2015-XXRJ-013)+3 种基金Natural Science Foundation of Jiangsu Province(Grant No.BK20171458)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(China under Grant No.16KJB520030)Sichuan Youth Science and Technique Foundation(No.2017JQ0048)NUIST Research Foundation for Talented Scholars(2015r014),PAPD and CICAEET funds.
文摘In the field of quantum communication,quantum steganography is an important branch of quantum information hiding.In a realistic quantum communication system,quantum noises are unavoidable and will seriously impact the safety and reliability of the quantum steganographic system.Therefore,it is very important to analyze the influence of noise on the quantum steganography protocol and how to reduce the effect of noise.This paper takes the quantum steganography protocol proposed in 2010 as an example to analyze the effects of noises on information qubits and secret message qubits in the four primary quantum noise environments.The results show that when the noise factor of one quantum channel noise is known,the size of the noise factor of the other quantum channel can be adjusted accordingly,such as artificially applying noise,so that the influence of noises on the protocol is minimized.In addition,this paper also proposes a method of improving the efficiency of the steganographic protocol in a noisy environment.
基金The project supported by Special Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20050285002It is a pleasure to thank Profs. Yin-Sheng Ling and Jian-Xing Fang for their enlightening discussions on this topic.
文摘The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varied from maximally entangled states to non-maximally entangled states, it is found that the effects of noise channels on the fidelity are nearly equivalent to each other for strong quantum noise. The degree of damage on the fidelity of non-maximally entangled channels is smaller than that of maximally entangled channels. The average fidelity of values larger than 2/3 may be one representation indirectly showing how much the unavoidable quantum noise is.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074027).
文摘Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.
基金supported by the Natural Science Foundation of Shandong Province of China(Grant No.ZR2012AM013)
文摘We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transitions at an intermediate and proper channel noise intensity, and the synchronization transitions become strongest when the channel noise intensity is optimal. The neurons can also exhibit synchronization transitions as the channel noise intensity is varied, and this phenomenon is enhanced at around the time delays that can induce the synchronization transitions. It is also found that the synchronization transitions induced by the channel noise are dependent on the coupling strength and the network average degree, and there is an optimal coupling strength or network average degree with which the synchronization transitions become strongest. These results show that by inducing synchronization transitions, the channel noise has a big regulation effect on the synchronization of the neuronal network. These findings could find potential implications for the information transmission in neural systems.
基金supported by the Key Research and Development Project of Shandong Province[2019GSF109084]the National Natural Science Foundation of China[51776111]Young Scholars Program of Shandong University[2018WLJH73].
文摘Flow channels with a variable cross-section are important components of piping system and are widely used in variousfields of engineering.Using afinite element method and modal analysis theory,flow-induced noise,mode shapes,and structure-borne noise in such systems are investigated in this study.The results demonstrate that the maximum displacement and equivalent stress are located in the part with variable cross-sectional area.The aver-age excitation force on theflow channel wall increases with theflow velocity.The maximum excitation force occurs in the range of 0–20 Hz,and then it decreases gradually in the range of 20–1000 Hz.Additionally,as theflow velocity rises from 1 to 3 m/s,the overall sound pressure level associated with theflow-induced noise grows from 49.37 to 66.37 dB.Similarly,the overall sound pressure level associated with the structure-borne noise rises from 40.27 to 72.20 dB.When theflow velocity is increased,the increment of the structure-borne noise is higher than that of theflow-induced noise.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea under Grant No 2011-0004949
文摘An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensionM non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact.
基金supported by the National Natural Science Foundation of China(No.61401164,No.61201145,No.61471175)the Natural Science Foundation of Guangdong Province of China(No.2014A030310308)the Supporting Plan for New Century Excellent Talents of the Ministry of Education(No.NCET-13-0805)
文摘In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1K and HE1K, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel(BI-AWGNC).
基金Supported by National Natural Science Foundation of China under Grant Nos. 60678022 and 10704001the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20060357008+2 种基金Anhui Provincial Natural Science Foundation under Grant No. 070412060the Key Program of the Education Department of Anhui Province under Grant Nos.KJ2008A28ZC,KJ2008B265,KJ2009A048Z, 2010SQRLI53ZD, and 2008JQI183the Talent Foundation of Anhui University and Anhui Key Laboratory of Information Materials and Devices (Anhui University)
文摘In this paper, we propose two physical schemes for teleporting an unknown atomic state through noisy channel in cavity QED. The quantum channel is a noisy one -- a mixed GHZ state, which is more realistic in quantum information processing. We solve analytically a master equation in the Lindblad form with (L2,z, L3,z, L4,z)-type of noise in cavity Q, ED. A comparison between the two protocols are discussed.
文摘We consider an iterative phase synchronization scheme based on maximum a posteriori probability algorithm.In classical approaches,the phase noise estimation model considers one sample per symbol at the channel and receiver.However,information theoretic studies suggested use of more than one sample per symbol at the channel and receiver for achieving higher performance.In this article,a soft-information aided iterative receiver is derived,which uses off-the-shelf blocks for detection and demodulation by keeping the complexity of the receiver acceptable.We consider here two samples per symbols at the channel and receiver in a pragmatic paradigm.It is shown that phase noise estimation can be significantly improved at the expense of modest processing overhead.Simulation results are presented for low-density parity check coded quadrature amplitude modulations.Our results show a significant performance improvement for strong phase noise values compared to classical receiver approaches.
基金supported by the National Natural Science Foundation of China (Grant No.11065003)the Natural Science Foundation of Guangxi Zhuang Autonoomous Region,China (Grant No.2011GXNSFA018129)the Research Funding of Education Department of Guangxi Zhuang Autonoomous Region of China (Grant No.201012MS026)
文摘Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers. We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence. Furthermoremore, the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same, regardless of the neuron numbers in the neuronal networks. Therefore for all the neuronal networks with different neuron numbers in the brain, relative weak synaptic conductance (0.1 mS/cm2) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding.
基金the Institute for Advanced Studies in Communications (Iecom) for supporting this researchfunding from the Brazilian Ministry of Education through the Brazilian Scientific Mobility Program CAPES-grant 88888.037310/2013-00
文摘This paper presents a unified theoretical analysis of the energy detection of Gaussian and M-PSK signals in κ-μ,α-μ,and η-μ fading channels at the output of an energy detector subject to impulsive noise(Bernoulli-Gaussian model). As a result, novel, simple, and accurately approximated expressions for the probability of detection are derived. More precisely, the generalized Gauss-Laguerre quadrature is applied to approximate the probability of detection as a simple finite sum. Monte Carlo simulations corroborate the accuracy and precision of the derived approximations. The results are further extended to cooperative energy detection with hard decision combining information.
基金supported by the National Natural Science Foundation of China(No.61833008)the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U1966202)the Six Talent Peaks High Level Project of Jiangsu Province(No.2017-XNY-004).
文摘Economic dispatch problem(EDP)is a fundamental optimization problem in power system operation,which aims at minimizing the total generation cost.In fact,the power grid is becoming a cyber-physical power system(CPPS).Therefore,the quality of communication is a key point.In this paper,considering two important factors,i.e.,time delays and channel noises,a fully distributed consensus based algorithm is proposed for solving EDP.The critical maximum allowable upper bounds of heterogeneous communication delays and self-delays are obtained.It should be pointed out that the proposed algorithm can be robust against the time-varying delays and channel noises considering generator constraints.In addition,even with time-varying delays and channel noises,the power balance of supply and demand is not broken during the optimization.Several simulation studies are presented to validate the correctness and superiority of the developed results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975026,and 12125402)National Key R&D Program of China(Grant No.2020YFA0712700)+2 种基金China Postdoctoral Science Foundation(Grant No.2021M690414)Beijing Postdoctoral Research Foundation(Grant No.2021ZZ091)Beijing Natural Science Foundation(Grant No.Z190005)。
文摘Nonclassical states play a crucial role in both theoretical and experimental investigations of quantum optics, and there is a wide interest in characterization and quantification of nonclassicality. By exploiting the freedom of the parameter s in the s-ordered phase-space distribution introduced by Cahill and Glauber [Phys. Rev. 177, 1882(1969)], we develop a method to reveal and quantify optical nonclassicality via the divided difference of the s-ordered phase-space distribution. Our approach yields naturally a family of quantifiers of optical nonclassicality, which have many desirable properties such as convexity and monotonicity under the Gaussian noise channels. The quantifiers are illustrated by evaluating nonclassicality of several typical states. Two simple and convenient criteria for nonclassicality are established, which in particular certify all nonclassical Gaussian states.
文摘An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails.
基金sponsored by the 973 Program(No.2012CB921603)863 Program(No.2011AA010801)+3 种基金the Natural Science Foundation of China(Nos.61527824,11374196,10934004 and 11204166)PCSIRT(No.IRT 13076)supported by the Natural Science Foundation of China(Nos.11175094 and 91221205)the National Basic Research Program of China(No.2015CB921001).
文摘Quantum secure direct communication is an important mode of quantum communication in which secret messages are securely communicated directly over a quantum channel.Quantum secure direct communication is also a basic cryptographic primitive for constructing other quantum communication tasks,such as quantum authentication and quantum dialog.Here,we report the first experimental demonstration of quantum secure direct communication based on the DL04 protocol and equipped with single-photon frequency coding that explicitly demonstrated block transmission.In our experiment,we provided 16 different frequency channels,equivalent to a nibble of four-bit binary numbers for direct information transmission.The experiment firmly demonstrated the feasibility of quantum secure direct communication in the presence of noise and loss.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos.11604226,61901420,and 11804236the Program of Beijing Municipal Commission of Education of China under Grant Nos.CIT&TCD201904080 and KM201810028005+3 种基金Shanxi Province Science Foundation for Youths under Grant No.201901D211235Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant No.2019L0507Shanxi 1331 Project Key Subjects ConstructionCapital Normal University classified development Program.
文摘In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In this paper, we propose hyperentanglement-assisted hyperdistillation schemes to guarantee the quality of hyper-encoding photon system based on the method of quantum hyper-teleportation, which can increase the success probability of hyperdistillation and reduce the resource consumption. First, we propose a hyperentanglement-assisted single-photon hyperdistillation (HASPHD) scheme for polarization and spatial qubits to get rid of the vacuum state component caused by transmission loss, whose success probability can achieve the optimal one by increasing the efficiency of quantum hyper-teleportation. Subsequently, we present two hyperentanglement-assisted hyperentanglement distillation (HAHED) schemes for photon system to protect hyperentanglement from both transmission loss and quantum channel noise, which can recover the less-entangled mixed state to maximally hyperentangled state for known-parameter and unknown-parameter cases with high success probability and low resource consumption. In these hyperdistillation schemes, the influence of imperfect effects of optical elements can be largely decreased by the quantum hyper-teleportation method. These characters make the hyperentanglement-assisted hyperdistillation schemes have potential application prospects in practical quantum information processing.
基金Supported by the National Natural Science Foundation of China(61373136,61401226,61304169)the Innovation Project for Graduate Education of Jiangsu Province(KYLX_0814)the Natural Science Foundation of Jiangsu Province(BK20130857)
文摘This paper propose a novel noncoherent chaotic com- munication scheme named multiple-input multiple-output correlation-delay-shill- keying (MIMO-CDSK). In this scheme, multiple antennas are employed to strengthen the robustness in transmission, and to get more diversity gain. The bit error rate (BER) of the MIMO-CDSK is studied analytically in AWGN channel model and multipath fading channel model. The theory and simulation results show that, the performance gain can be obtained with multiple antennas allocated in the transmitter and receiver. Moreover, it is observed that MIMO-CDSK system can effectively reduce the multipath interference.