The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on th...The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities.展开更多
Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode ...An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.展开更多
Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineat...Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineating reservoirs. We apply edge-preserving smoothing (EPS) to seismic processing and propose a most homogeneous dip-scanning method. The method preserves the geological features, eliminate random noise efficiently, obtain dip information, and improve the accuracy of identifying the oil and gas traps.展开更多
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil comm...Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average(ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive(AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.展开更多
In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence...In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence of the mesh difference on the penetration resistance and acceleration signals are seldom refer to. This paper presents the occurring mechanism and restraining method of numerical noise signal in penetration simulation. First, the concept of the noise signal izs proposed. By taking a 3D penetration simulation as example, the influence of the noise signal on the penetration resistance in different mesh scales and impact velocity is studied. To ensure the convergence of the computational results, the grid scale of the target is encrypted to 1:1:8. In addition, modem spectrum analysis method is introduced to further analyze the penetration resistance signal. The research results presented is useful to improve the computational accuracy of high speed projectile penetration simulation, and provide important reference for carrying out structural design and optimization of fuze system.展开更多
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random t...The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
The diffusion in a harmonic oscillator driven by coloured noises ξ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expre...The diffusion in a harmonic oscillator driven by coloured noises ξ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time z3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient A of the two Ornstein-Uhlenbeck (O-U) noises. 2) Changing the value of T3, the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3) Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model.展开更多
A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) al...A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.展开更多
The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small syste...The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.展开更多
If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contac...If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contacts. In this paper we study more general operating conditions of Hall plates with an arbitrary number of contacts. In such hybrid operating modes current sources are connected to a first set of contacts and voltage sources to a second set of contacts. Output voltages are tapped at the first set of contacts and output currents are measured at the second set of contacts. All these output signals are multiplied by coefficients and added up. The purpose of this work is to figure out which operating mode and which Hall plate achieve maximum signal at minimum thermal noise and power dissipation. To this end we develop a theory, which gives the ratio of signal over noise and power as a function of the resistance matrix of Hall plates, of the supply voltages and currents, and of the coefficients. Optimization is done analytically in closed form and numerically for specific examples. The results are: 1) all operating modes have identical noise performance if their parameters are optimized;2) for any Hall plate one can measure its resistance matrix and insert its values into our formulae to obtain the optimum supply currents and coefficients for optimum noise performance.展开更多
Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were...Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were discussed and compared. The estimation principle and theoretical estimation bias of these estimators under Rayleigh fading channels were analyzed; furthermore, the Cramer Rao bound (CRB) of Doppler shift estimation was deduced, and a novel modification method based on two-dimensional polynomial fitting was proposed to reduce the Doppler shift estimation bias. We verified our algorithms with the Monte Carlo computer simulation; simulation results showed better variance performance of modified methods than those of the original methods. In addition, the applicable situations of these estimators were discussed.展开更多
The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used...The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used in several regions with different geological features: desert, saline-alkali farmland, and carbonate areas in mountainous regions in order to test their property indexes. Based on the geophone vibration equation and from the property index effects ofgeophone and the connection of the geophones on seismic data, we analyzed seismic data quality acquired inthe tested regions and suggest that suitable geophone property indexes, reasonable choice of geophone types, and the suitable geophone connection can enhance the signal/noise ratio of seismic data.展开更多
The one-block version of ordered subsets (OS) techniques was used to accelerate the convergent rate of the space-alternating generalized expectation-maximization (SAGE) algorithm. The new row-action SAGE (RA-SAGE) alg...The one-block version of ordered subsets (OS) techniques was used to accelerate the convergent rate of the space-alternating generalized expectation-maximization (SAGE) algorithm. The new row-action SAGE (RA-SAGE) algorithm processed projections in sequentially orthogonal order which reduced the dependency among the projections and speeds up the convergences. Additionally, the over-relaxation parameter in the direction defined by the RA-SAGE algorithm was also applied to obtain fast convergence to a globally maximum likelihood (ML) solution. In experiments, the RA-SAGE algorithm and the classical SAGE algorithm were compared in the application to positron emission tomography (PET) image reconstruction. Simulation results showed that RA-SAGE had better performance than SAGE in both convergence and image quality.展开更多
A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high si...A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.展开更多
[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of gua...[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.展开更多
To find out the effect of scan rate on sensitivity in quadrupole mass spectrometer,DDV and 11 common hypnotic drugs were chosen for GC-MS analysis.Different scan time and dwell time was used separately for full scan m...To find out the effect of scan rate on sensitivity in quadrupole mass spectrometer,DDV and 11 common hypnotic drugs were chosen for GC-MS analysis.Different scan time and dwell time was used separately for full scan mode and SIM.Then charasteristic ions were extracted to calculate signal to noise values.展开更多
Deep drawing is one of the most important processes for forming sheet metal parts.It is widely used for mass production of cup shapes in automobile,aerospace and packaging industries.Cup drawing,besides its importance...Deep drawing is one of the most important processes for forming sheet metal parts.It is widely used for mass production of cup shapes in automobile,aerospace and packaging industries.Cup drawing,besides its importance as forming process,also serves as a basic test for the sheet metal formability.The effect of equipment and tooling parameters results in complex deformation mechanism.Existence of thickness variation in the formed part may cause stress concentration and may lead to acceleration of damage.Using TAGUCHI's signal-to-noise ratio,it is determined that the die shoulder radius has major influence followed by blank holder force and punch nose radius on the thickness distribution of the deep drawn cup of AA 6061 sheet.The optimum levels of the above three factors,for the most even wall thickness distribution,are found to be punch nose radius of 3 mm,die shoulder radius of 8 mm and blank holder force of 4 kN.展开更多
基金Project(2015CB060200) supported by the National Basic Research Program of ChinaProject(41772313) supported by the National Natural Science Foundation of ChinaProject(2018zzts736) supported by the Independent Innovation Exploration Project of Central South University,China
文摘The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities.
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
基金Project(61573381)supported by the National Natural Science Foundation of ChinaProject(2012AA051601)supported by the National High-tech Research and Development Program of China
文摘An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.
文摘Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineating reservoirs. We apply edge-preserving smoothing (EPS) to seismic processing and propose a most homogeneous dip-scanning method. The method preserves the geological features, eliminate random noise efficiently, obtain dip information, and improve the accuracy of identifying the oil and gas traps.
基金financially supported by the 973 Project (Grant No. 2011CB013704)by the National Natural Science Foundation of China (Grant Nos. 51379005, 51009093)
文摘Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average(ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive(AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.
基金Supported by National Natural Science Foundation of China(Grant No.11372047)
文摘In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence of the mesh difference on the penetration resistance and acceleration signals are seldom refer to. This paper presents the occurring mechanism and restraining method of numerical noise signal in penetration simulation. First, the concept of the noise signal izs proposed. By taking a 3D penetration simulation as example, the influence of the noise signal on the penetration resistance in different mesh scales and impact velocity is studied. To ensure the convergence of the computational results, the grid scale of the target is encrypted to 1:1:8. In addition, modem spectrum analysis method is introduced to further analyze the penetration resistance signal. The research results presented is useful to improve the computational accuracy of high speed projectile penetration simulation, and provide important reference for carrying out structural design and optimization of fuze system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372156 and 61405053)the Natural Science Foundation of Zhejiang Province of China(Grant No.LZ13F04001)
文摘The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025)
文摘The diffusion in a harmonic oscillator driven by coloured noises ξ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time z3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient A of the two Ornstein-Uhlenbeck (O-U) noises. 2) Changing the value of T3, the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3) Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model.
文摘A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.
基金Project (10276032) supportedjointly by the National Natural Science Foundation of China and by the Science Foundationof China Academy of Engineering Physics NSAFproject(2005038228) supported by Postdoctoral Science Foundation of China projectsupported by the Postdoctoral Science Foundation of Central South University(2005)
文摘The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.
文摘If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contacts. In this paper we study more general operating conditions of Hall plates with an arbitrary number of contacts. In such hybrid operating modes current sources are connected to a first set of contacts and voltage sources to a second set of contacts. Output voltages are tapped at the first set of contacts and output currents are measured at the second set of contacts. All these output signals are multiplied by coefficients and added up. The purpose of this work is to figure out which operating mode and which Hall plate achieve maximum signal at minimum thermal noise and power dissipation. To this end we develop a theory, which gives the ratio of signal over noise and power as a function of the resistance matrix of Hall plates, of the supply voltages and currents, and of the coefficients. Optimization is done analytically in closed form and numerically for specific examples. The results are: 1) all operating modes have identical noise performance if their parameters are optimized;2) for any Hall plate one can measure its resistance matrix and insert its values into our formulae to obtain the optimum supply currents and coefficients for optimum noise performance.
文摘Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were discussed and compared. The estimation principle and theoretical estimation bias of these estimators under Rayleigh fading channels were analyzed; furthermore, the Cramer Rao bound (CRB) of Doppler shift estimation was deduced, and a novel modification method based on two-dimensional polynomial fitting was proposed to reduce the Doppler shift estimation bias. We verified our algorithms with the Monte Carlo computer simulation; simulation results showed better variance performance of modified methods than those of the original methods. In addition, the applicable situations of these estimators were discussed.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2007CB209603)
文摘The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used in several regions with different geological features: desert, saline-alkali farmland, and carbonate areas in mountainous regions in order to test their property indexes. Based on the geophone vibration equation and from the property index effects ofgeophone and the connection of the geophones on seismic data, we analyzed seismic data quality acquired inthe tested regions and suggest that suitable geophone property indexes, reasonable choice of geophone types, and the suitable geophone connection can enhance the signal/noise ratio of seismic data.
文摘The one-block version of ordered subsets (OS) techniques was used to accelerate the convergent rate of the space-alternating generalized expectation-maximization (SAGE) algorithm. The new row-action SAGE (RA-SAGE) algorithm processed projections in sequentially orthogonal order which reduced the dependency among the projections and speeds up the convergences. Additionally, the over-relaxation parameter in the direction defined by the RA-SAGE algorithm was also applied to obtain fast convergence to a globally maximum likelihood (ML) solution. In experiments, the RA-SAGE algorithm and the classical SAGE algorithm were compared in the application to positron emission tomography (PET) image reconstruction. Simulation results showed that RA-SAGE had better performance than SAGE in both convergence and image quality.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60677051 and No.10774193) and the National Key Basic Research Special Foundation (No.G2010CB923204).
文摘A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.
基金Supported by Special Fund for Scientific Research of Shannxi Education Department(No:2010JK463)Shaanxi Natural Science Foundation(2011JE012)~~
文摘[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.
文摘To find out the effect of scan rate on sensitivity in quadrupole mass spectrometer,DDV and 11 common hypnotic drugs were chosen for GC-MS analysis.Different scan time and dwell time was used separately for full scan mode and SIM.Then charasteristic ions were extracted to calculate signal to noise values.
文摘Deep drawing is one of the most important processes for forming sheet metal parts.It is widely used for mass production of cup shapes in automobile,aerospace and packaging industries.Cup drawing,besides its importance as forming process,also serves as a basic test for the sheet metal formability.The effect of equipment and tooling parameters results in complex deformation mechanism.Existence of thickness variation in the formed part may cause stress concentration and may lead to acceleration of damage.Using TAGUCHI's signal-to-noise ratio,it is determined that the die shoulder radius has major influence followed by blank holder force and punch nose radius on the thickness distribution of the deep drawn cup of AA 6061 sheet.The optimum levels of the above three factors,for the most even wall thickness distribution,are found to be punch nose radius of 3 mm,die shoulder radius of 8 mm and blank holder force of 4 kN.