A control-based full state observer scheme is explored for video target tracking application, and is enhanced with a lowpass filter for improving the tracking precision, thus forming an Enhanced Full State Observer (E...A control-based full state observer scheme is explored for video target tracking application, and is enhanced with a lowpass filter for improving the tracking precision, thus forming an Enhanced Full State Observer (EFSO). The whole design is based on the given lab-generated video sequence with motion of an articulate target. To evaluate the EFSO’s stochastic noise tolerance, a Kalman Filter (KF) is intentionally employed in tracking the same target with the given Gaussian white noises. The comparison results indicate that, for system noises of certain statistics, the proposed EFSO has its own noise resistance capacity that is superior to that of KF and is more advantageous for implementation.展开更多
In this paper we have investigated the single phase sleep signal modulation technique,step-wise V_(gs)technique and the three-phase reactivation technique to evaluate the noise characteristics of multi-threshold CMO...In this paper we have investigated the single phase sleep signal modulation technique,step-wise V_(gs)technique and the three-phase reactivation technique to evaluate the noise characteristics of multi-threshold CMOS circuits used in communication systems.The stacking technique is also implemented in this paper for the sleep transistor.The stacking approach helps to minimize leakage power.The mode transition noise minimization techniques have been applied to 32-bit dynamic TSPC adder with stacked sleep transistors in a standard 45-nm CMOS process.The reactivation noise,delay and energy consumption of all the three techniques have been evaluated.It has been shown that the three phase modulation technique significantly minimizes the reactivation delay when the peak noise level is maintained the same for all three techniques.The three phase modulation technique shows 67.3%and 35%reduction in delay compared to the single phase and step-wise Vgs modulation techniques respectively.The reactivation energy is also suppressed by 49.3%and 39.14%with respect to the single-phase and stepwise Vgs techniques.展开更多
How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficien...How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficient dynamic relaxation‐noise tolerant zeroing neural network(DR‐NTZNN)form‐finding algorithm is established through analysing the physical properties of tensegrity structures.In addition,the non‐linear constrained opti-misation problem which transformed from the form‐finding problem is solved by a sequential quadratic programming algorithm.Moreover,the noise may produce in the form‐finding process that includes the round‐off errors which are brought by the approximate matrix and restart point calculating course,disturbance caused by external force and manufacturing error when constructing a tensegrity structure.Hence,for the purpose of suppressing the noise,a noise tolerant zeroing neural network is presented to solve the search direction,which can endow the anti‐noise capability to the form‐finding model and enhance the calculation capability.Besides,the dynamic relaxation method is contributed to seek the nodal coordinates rapidly when the search direction is acquired.The numerical results show the form‐finding model has a huge capability for high‐dimensional free form cable‐strut mechanisms with complicated topology.Eventually,comparing with other existing form‐finding methods,the contrast simulations reveal the excellent anti‐noise performance and calculation capacity of DR‐NTZNN form‐finding algorithm.展开更多
Women have been stereotyped as better multitaskers when compared to their male counterparts. The purpose of this study is to investigate whether there are differences in gender performance when performing cognitive co...Women have been stereotyped as better multitaskers when compared to their male counterparts. The purpose of this study is to investigate whether there are differences in gender performance when performing cognitive combined tasks. Twenty-four graduate students (twelve females and twelve males) volunteered to participate in the study. The task requires participants to indicate when they perceive a change in the intensity of an auditory signal while simultaneously solving algebraic problems. Multivariate Analysis of Variance (MANOVA) results reveal no significant differences between genders when performing the combined tasks (p = 0.1831 and 2 = 0.7891) although the average number of false alarms made during the combined tasks by males is nearly 11% higher than the average number of false alarms made by females. However, (Multivariate Analysis of Variance) ANOVA results for the combined tasks show that males outperform females on the computational task while listening for changes in the auditory signal F(1, 22) - 5.09, p 〈 0.03, but there are no significant differences in their ability to detect noise intensity variation or in the number of false alarms made while multitasking. For the single task analysis the ANOVAs indicate no significant differences in signal detection task performance, computational task performance, or the number of false alarms made by males and females.展开更多
基金Supported by the Science Foundation of Zhejiang Education Department (Y200804700)Ningbo Natural Science Foundation of Zhejiang Province (No. 201001A6001075)
文摘A control-based full state observer scheme is explored for video target tracking application, and is enhanced with a lowpass filter for improving the tracking precision, thus forming an Enhanced Full State Observer (EFSO). The whole design is based on the given lab-generated video sequence with motion of an articulate target. To evaluate the EFSO’s stochastic noise tolerance, a Kalman Filter (KF) is intentionally employed in tracking the same target with the given Gaussian white noises. The comparison results indicate that, for system noises of certain statistics, the proposed EFSO has its own noise resistance capacity that is superior to that of KF and is more advantageous for implementation.
文摘In this paper we have investigated the single phase sleep signal modulation technique,step-wise V_(gs)technique and the three-phase reactivation technique to evaluate the noise characteristics of multi-threshold CMOS circuits used in communication systems.The stacking technique is also implemented in this paper for the sleep transistor.The stacking approach helps to minimize leakage power.The mode transition noise minimization techniques have been applied to 32-bit dynamic TSPC adder with stacked sleep transistors in a standard 45-nm CMOS process.The reactivation noise,delay and energy consumption of all the three techniques have been evaluated.It has been shown that the three phase modulation technique significantly minimizes the reactivation delay when the peak noise level is maintained the same for all three techniques.The three phase modulation technique shows 67.3%and 35%reduction in delay compared to the single phase and step-wise Vgs modulation techniques respectively.The reactivation energy is also suppressed by 49.3%and 39.14%with respect to the single-phase and stepwise Vgs techniques.
基金supported in part by the National Natural Science Foundation of China under grants 61873304,62173048,62106023in part by the China Postdoctoral Science Foundation Funded Project under grants 2018M641784 and 2019T120240+1 种基金also in part by the Key Science and Technology Projects of Jilin Province,China,under grant 20210201106GXalso in part by the Changchun Science and Technology Project under grant 21ZY41.
文摘How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficient dynamic relaxation‐noise tolerant zeroing neural network(DR‐NTZNN)form‐finding algorithm is established through analysing the physical properties of tensegrity structures.In addition,the non‐linear constrained opti-misation problem which transformed from the form‐finding problem is solved by a sequential quadratic programming algorithm.Moreover,the noise may produce in the form‐finding process that includes the round‐off errors which are brought by the approximate matrix and restart point calculating course,disturbance caused by external force and manufacturing error when constructing a tensegrity structure.Hence,for the purpose of suppressing the noise,a noise tolerant zeroing neural network is presented to solve the search direction,which can endow the anti‐noise capability to the form‐finding model and enhance the calculation capability.Besides,the dynamic relaxation method is contributed to seek the nodal coordinates rapidly when the search direction is acquired.The numerical results show the form‐finding model has a huge capability for high‐dimensional free form cable‐strut mechanisms with complicated topology.Eventually,comparing with other existing form‐finding methods,the contrast simulations reveal the excellent anti‐noise performance and calculation capacity of DR‐NTZNN form‐finding algorithm.
文摘Women have been stereotyped as better multitaskers when compared to their male counterparts. The purpose of this study is to investigate whether there are differences in gender performance when performing cognitive combined tasks. Twenty-four graduate students (twelve females and twelve males) volunteered to participate in the study. The task requires participants to indicate when they perceive a change in the intensity of an auditory signal while simultaneously solving algebraic problems. Multivariate Analysis of Variance (MANOVA) results reveal no significant differences between genders when performing the combined tasks (p = 0.1831 and 2 = 0.7891) although the average number of false alarms made during the combined tasks by males is nearly 11% higher than the average number of false alarms made by females. However, (Multivariate Analysis of Variance) ANOVA results for the combined tasks show that males outperform females on the computational task while listening for changes in the auditory signal F(1, 22) - 5.09, p 〈 0.03, but there are no significant differences in their ability to detect noise intensity variation or in the number of false alarms made while multitasking. For the single task analysis the ANOVAs indicate no significant differences in signal detection task performance, computational task performance, or the number of false alarms made by males and females.