To solve the large noise problem for the low- precision gyroscopes in micro-electro mechanical systems (MEMS) of inertial navigation system, an improved noise reduction method, based on the analyses of the fast Four...To solve the large noise problem for the low- precision gyroscopes in micro-electro mechanical systems (MEMS) of inertial navigation system, an improved noise reduction method, based on the analyses of the fast Fourier transformation (FFT) noise reduction principle and the simple wavelet noise reduction principle, was proposed. Furthermore, the FFT noise reduction method, the simple wavelet noise reduction method and the improved noise reduction method were comparatively analyzed and experimentally verified in the case of the constant rate and dynamic rate. The experimental analysis results showed that the improved noise reduction method had a very good result in the noise reduction of the gyroscope data at different fi:equencies, and its performance was superior to those of the FFT noise reduction method and the simple wavelet noise reduction method.展开更多
Feature extraction is often performed to reduce spectral dimension of hyperspectral images before image classification. The maximum noise fraction (MNF) transform is one of the most commonly used spectral feature ex...Feature extraction is often performed to reduce spectral dimension of hyperspectral images before image classification. The maximum noise fraction (MNF) transform is one of the most commonly used spectral feature extraction methods. The spectral features in several bands of hyperspectral images are submerged by the noise. The MNF transform is advantageous over the principle component (PC) transform because it takes the noise information in the spatial domain into consideration. However, the experiments described in this paper demonstrate that classification accuracy is greatly influenced by the MNF transform when the ground objects are mixed together. The underlying mechanism of it is revealed and analyzed by mathematical theory. In order to improve the performance of classification after feature extraction when ground objects are mixed in hyperspectral images, a new MNF transform, with an improved method of estimating hyperspectral image noise covariance matrix (NCM), is presented. This improved MNF transform is applied to both the simulated data and real data. The results show that compared with the classical MNF transform, this new method enhanced the ability of feature extraction and increased classification accuracy.展开更多
In proteomics, many methods for the identification of proteins have been developed. However, because of limited known genome sequences, noisy data, incomplete ion sequences, and the accuracy of protein identification,...In proteomics, many methods for the identification of proteins have been developed. However, because of limited known genome sequences, noisy data, incomplete ion sequences, and the accuracy of protein identification,it is challenging to identify peptides using tandem mass spectral data. Noise filtering and removing thus play a key role in accurate peptide identification from tandem mass spectra. In this paper, we employ a Bayesian model to identify proteins based on the prior information of bond cleavages. A Markov Chain Monte Carlo(MCMC)algorithm is used to simulate candidate peptides from the posterior distribution and to estimate the parameters for the Bayesian model. Our simulation and computational experimental results show that the model can identify peptide with a higher accuracy.展开更多
In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stoch...In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space.展开更多
基金Acknowledgements This work was financially supported by the Program for Innovation Team Building at Institutions of Higher Education in Chongqing, the National Natural Science Foundation of China (Grant Nos. 51075420 and 61 371096), and the Natural Science Foundation of Chongqing Science & Technology Commission (CQ CSTC) (No. 2010BB2409).
文摘To solve the large noise problem for the low- precision gyroscopes in micro-electro mechanical systems (MEMS) of inertial navigation system, an improved noise reduction method, based on the analyses of the fast Fourier transformation (FFT) noise reduction principle and the simple wavelet noise reduction principle, was proposed. Furthermore, the FFT noise reduction method, the simple wavelet noise reduction method and the improved noise reduction method were comparatively analyzed and experimentally verified in the case of the constant rate and dynamic rate. The experimental analysis results showed that the improved noise reduction method had a very good result in the noise reduction of the gyroscope data at different fi:equencies, and its performance was superior to those of the FFT noise reduction method and the simple wavelet noise reduction method.
基金the National Basic Research Program of China (Grant No. 2009CB723902)the National High-Tech Research & Development Program of China (Grant No. 2007AA12Z138)
文摘Feature extraction is often performed to reduce spectral dimension of hyperspectral images before image classification. The maximum noise fraction (MNF) transform is one of the most commonly used spectral feature extraction methods. The spectral features in several bands of hyperspectral images are submerged by the noise. The MNF transform is advantageous over the principle component (PC) transform because it takes the noise information in the spatial domain into consideration. However, the experiments described in this paper demonstrate that classification accuracy is greatly influenced by the MNF transform when the ground objects are mixed together. The underlying mechanism of it is revealed and analyzed by mathematical theory. In order to improve the performance of classification after feature extraction when ground objects are mixed in hyperspectral images, a new MNF transform, with an improved method of estimating hyperspectral image noise covariance matrix (NCM), is presented. This improved MNF transform is applied to both the simulated data and real data. The results show that compared with the classical MNF transform, this new method enhanced the ability of feature extraction and increased classification accuracy.
基金supported by an NSF Science and Technology Center,under Grant Agreement CCF-0939370 and 2 G12 RR003048 from the RCMI program,Division of Research Infrastructure,National Center for Research Resources,NIH
文摘In proteomics, many methods for the identification of proteins have been developed. However, because of limited known genome sequences, noisy data, incomplete ion sequences, and the accuracy of protein identification,it is challenging to identify peptides using tandem mass spectral data. Noise filtering and removing thus play a key role in accurate peptide identification from tandem mass spectra. In this paper, we employ a Bayesian model to identify proteins based on the prior information of bond cleavages. A Markov Chain Monte Carlo(MCMC)algorithm is used to simulate candidate peptides from the posterior distribution and to estimate the parameters for the Bayesian model. Our simulation and computational experimental results show that the model can identify peptide with a higher accuracy.
文摘In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space.