The rich data provided by satellites and unmanned aerial vehicles bring opportunities to directly model aerial image features by extracting their spatial and structural patterns.Although convolutional autoencoders(CAE...The rich data provided by satellites and unmanned aerial vehicles bring opportunities to directly model aerial image features by extracting their spatial and structural patterns.Although convolutional autoencoders(CAEs)have been attained a remarkable performance in ideal aerial image feature extraction,they are still challenging to extract information from noisy images which are generated from capture and transmission.In this paper,a novel CAE-based noise-robust unsupervised learning method is proposed for extracting high-level features accurately from aerial images and mitigating the effect of noise.Different from conventional CAEs,the proposed method introduces the noise-robust module between the encoder and the decoder.Besides,several pooling layers in CAEs are replaced by convolutional layers with stride=2.The performance of feature extraction is evaluated by the prediction accuracy and the accuracy loss in image classification experiments.A 5-classes aerial optical scene and a 9-classes hyperspectral image(HSI)data set are utilized for optical image and HSI feature extraction,respectively.Highlevel features extracted from aerial images are utilized for image classification by a linear support vector machine(SVM)classifier.Experimental results indicate that the proposed method improves the classification accuracy for noisy images(Gaussian noise 2Dσ=0.1,3Dσ=60)in both optical images(2D 87.5%)and HSIs(3D 85.6%)compared with the traditional CAE(2D 78.6%,3D 84.2%).The accuracy loss in classification experiments increases with the increment of noise.Compared with the traditional CAE(2D 15.7%,3D 11.8%),the proposed method shows the lower classification accuracy loss in experiments(2D 0.3%,3D 6.3%).The proposed unsupervised noise-robust feature extraction method attains desirable classification accuracy in ideal input and enhances the feature extraction capability from noisy input.展开更多
The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear p...The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear prediction residual of speech is modeled as Student-t distribution, and the additive noise is incorporated explicitly to increase the robustness, thus a probabilistic model for sparse linear prediction of speech is built, Furthermore, variational Bayesian inference is utilized to approximate the intractable posterior distributions of the model parameters, and then the optimal linear prediction parameters are estimated robustly. The experimental results demonstrate the advantage of the developed algorithm in terms of several different metrics compared with the traditional algorithm and the l1 norm minimization based sparse linear prediction algorithm proposed in recent years. Finally it draws to a conclusion that the proposed algorithm is more robust to noise and is able to increase the speech quality in applications.展开更多
基金supported by the National Defense Basic Scientific Research Program of China(Grant No.JCKY2018603C015)the Cultivation Plan of Major Research Program of Harbin Institute of Technology(Grant No.ZDXMPY20180101)。
文摘The rich data provided by satellites and unmanned aerial vehicles bring opportunities to directly model aerial image features by extracting their spatial and structural patterns.Although convolutional autoencoders(CAEs)have been attained a remarkable performance in ideal aerial image feature extraction,they are still challenging to extract information from noisy images which are generated from capture and transmission.In this paper,a novel CAE-based noise-robust unsupervised learning method is proposed for extracting high-level features accurately from aerial images and mitigating the effect of noise.Different from conventional CAEs,the proposed method introduces the noise-robust module between the encoder and the decoder.Besides,several pooling layers in CAEs are replaced by convolutional layers with stride=2.The performance of feature extraction is evaluated by the prediction accuracy and the accuracy loss in image classification experiments.A 5-classes aerial optical scene and a 9-classes hyperspectral image(HSI)data set are utilized for optical image and HSI feature extraction,respectively.Highlevel features extracted from aerial images are utilized for image classification by a linear support vector machine(SVM)classifier.Experimental results indicate that the proposed method improves the classification accuracy for noisy images(Gaussian noise 2Dσ=0.1,3Dσ=60)in both optical images(2D 87.5%)and HSIs(3D 85.6%)compared with the traditional CAE(2D 78.6%,3D 84.2%).The accuracy loss in classification experiments increases with the increment of noise.Compared with the traditional CAE(2D 15.7%,3D 11.8%),the proposed method shows the lower classification accuracy loss in experiments(2D 0.3%,3D 6.3%).The proposed unsupervised noise-robust feature extraction method attains desirable classification accuracy in ideal input and enhances the feature extraction capability from noisy input.
基金supported by the Natural Science Foundation of Jiangsu Province(BK2012510,BK20140074)the National Postdoctoral Foundation of China(20090461424)
文摘The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear prediction residual of speech is modeled as Student-t distribution, and the additive noise is incorporated explicitly to increase the robustness, thus a probabilistic model for sparse linear prediction of speech is built, Furthermore, variational Bayesian inference is utilized to approximate the intractable posterior distributions of the model parameters, and then the optimal linear prediction parameters are estimated robustly. The experimental results demonstrate the advantage of the developed algorithm in terms of several different metrics compared with the traditional algorithm and the l1 norm minimization based sparse linear prediction algorithm proposed in recent years. Finally it draws to a conclusion that the proposed algorithm is more robust to noise and is able to increase the speech quality in applications.