Bioluminescence tomography(BLT)is an important noninvasive optical molecular imaging modality in preclinical research.To improve the image quality,reconstruction algorithms have to deal with the inherent ill-posedness...Bioluminescence tomography(BLT)is an important noninvasive optical molecular imaging modality in preclinical research.To improve the image quality,reconstruction algorithms have to deal with the inherent ill-posedness of BLT inverse problem.The sparse characteristic of bioluminescent sources in spatial distribution has been widely explored in BLT and many L1-regularized methods have been investigated due to the sparsity-inducing properties of L1 norm.In this paper,we present a reconstruction method based on L_(1/2) regularization to enhance sparsity of BLT solution and solve the nonconvex L_(1/2) norm problem by converting it to a series of weighted L1 homotopy minimization problems with iteratively updated weights.To assess the performance of the proposed reconstruction algorithm,simulations on a heterogeneous mouse model are designed to compare it with three representative sparse reconstruction algorithms,including the weighted interior-point,L1 homotopy,and the Stagewise Orthogonal Matching Pursuit algorithm.Simulation results show that the proposed method yield stable reconstruction results under different noise levels.Quantitative comparison results demonstrate that the proposed algorithm outperforms the competitor algorithms in location accuracy,multiple-source resolving and image quality.展开更多
The purpose of this paper is to devise exact l_(1) exponential penalty function method to solve multiobjective optimization problems with exponentialtype invexity.The conditions governing the equivalence of the(weak)...The purpose of this paper is to devise exact l_(1) exponential penalty function method to solve multiobjective optimization problems with exponentialtype invexity.The conditions governing the equivalence of the(weak)efficient solutions to the vector optimization problem and the(weak)efficient solutions to associated unconstrained exponential penalized multiobjective optimization problem are studied.Examples are given to illustrate the obtained results.展开更多
基金supported by the National Natural Science Foundation of China(No.61401264,11574192)the Natural Science Research Plan Program in Shaanxi Province of China(No.2015JM6322)the Fundamental Research Funds for the Central Universities(No.GK201603025).
文摘Bioluminescence tomography(BLT)is an important noninvasive optical molecular imaging modality in preclinical research.To improve the image quality,reconstruction algorithms have to deal with the inherent ill-posedness of BLT inverse problem.The sparse characteristic of bioluminescent sources in spatial distribution has been widely explored in BLT and many L1-regularized methods have been investigated due to the sparsity-inducing properties of L1 norm.In this paper,we present a reconstruction method based on L_(1/2) regularization to enhance sparsity of BLT solution and solve the nonconvex L_(1/2) norm problem by converting it to a series of weighted L1 homotopy minimization problems with iteratively updated weights.To assess the performance of the proposed reconstruction algorithm,simulations on a heterogeneous mouse model are designed to compare it with three representative sparse reconstruction algorithms,including the weighted interior-point,L1 homotopy,and the Stagewise Orthogonal Matching Pursuit algorithm.Simulation results show that the proposed method yield stable reconstruction results under different noise levels.Quantitative comparison results demonstrate that the proposed algorithm outperforms the competitor algorithms in location accuracy,multiple-source resolving and image quality.
基金The research of the first author is financially supported by the University Grant Commission,New Delhi,India(No.41-801/2012(SR)).
文摘The purpose of this paper is to devise exact l_(1) exponential penalty function method to solve multiobjective optimization problems with exponentialtype invexity.The conditions governing the equivalence of the(weak)efficient solutions to the vector optimization problem and the(weak)efficient solutions to associated unconstrained exponential penalized multiobjective optimization problem are studied.Examples are given to illustrate the obtained results.