Restrictions of classical mechanics which take place because of holonomic constraints hypothesis used for obtaining canonical Lagrange equation are analyzed. As it was shown that this hypothesis excludes non-linear te...Restrictions of classical mechanics which take place because of holonomic constraints hypothesis used for obtaining canonical Lagrange equation are analyzed. As it was shown that this hypothesis excludes non-linear terms in the expression for forces which are responsible for energy exchange between different degrees of freedom of a many-body system. An oscillator passing a potential barrier is considered as an example which demonstrated this fact. It was found that the oscillator can pass the barrier even if kinetic energy of its mass center is below the potential barrier’s height due to non-linear terms. This effect is lost because of holonomic constraints hypothesis. We also explained how one can derive a system’s motion equation without the use of holonomic constraints hypothesis. This equation can be used to describe non-linear irreversible processes within the frames of Newton’s laws.展开更多
A variational formulation of the synthesis problem for plane radiating systems according to the prescribed power directivity pattern (DP) is considered. The function representing the mean-square deviation of the presc...A variational formulation of the synthesis problem for plane radiating systems according to the prescribed power directivity pattern (DP) is considered. The function representing the mean-square deviation of the prescribed and synthesized power DPs and containing the additional term with squared norm of the current or field in the antenna aperture is considered as the criterion of optimization. Freedom to choose the phase DP is used to improve the proximity of the prescribed and synthesized DPs. In such formulation, the classes of non-linear problems, for which the non-uniqueness of solutions, their branching and bifurcation are characteristic, arise. The properties of solutions depend on the electric size of radiating system and prescribed power DP. From a practical point of view, the existence of different solutions creating the same or similar DPs, gives the opportunity to choose the solution that has a simpler implementation. The synthesis problems for plane radiating systems and plane arrays are considered.展开更多
Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Br...Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Bratu’s equation, Troesch’s problems) occurs engineering and science, including the modeling of chemical reactions diffusion processes and heat transfer. An analytical expression pertaining to the concentration of substrate is obtained using Homotopy perturbation method for all values of parameters. These approximate analytical results were found to be in good agreement with the simulation results.展开更多
Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triax...Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triaxial rigid bodies) and the bigger primary is a source of radiation. Moser’s conditions are utilized in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double D’Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability except for the three mass ratios μc1, μc2 and μc3, which depend upon the perturbations ε1 and ε1 in the Coriolis and centrifugal forces respectively and the parameters A1,A2,A3 and A4 which depend upon the semi-axes a1,b1,c1;a2,b2,c2 of the triaxial rigid bodies and p, the radiation parameter.展开更多
This paper deals with the problem of the postbuckling response of a thin cantilever beam ofnon-linear material, subjected to subtangential follower forces. Based on the well-knownBernoulli-Euler bending moment-curvatu...This paper deals with the problem of the postbuckling response of a thin cantilever beam ofnon-linear material, subjected to subtangential follower forces. Based on the well-knownBernoulli-Euler bending moment-curvature relation, the proposed problem is reduced to a specialeigenvalue problem of non-linear differential equation. An approximate solution is achieved byusing a simple and very effective technique, which leads to reliable results even in the case of verylarge deflections. The initial postbuckling path depending on the subtangential follower forces inequilibrium is then obtained. Moreover, the individual and coupling effect of the subtangential fol-lower force, the material non-linearity and the beam slenderness ratio on the initial postbucklingpath are also discussed in detail.展开更多
Phase imaging coupled to micro-tomography acquisition has emerged as a powerful tool to investigate specimens in a non-destructive manner. While the intensity data can be acquired and recorded, the phase information o...Phase imaging coupled to micro-tomography acquisition has emerged as a powerful tool to investigate specimens in a non-destructive manner. While the intensity data can be acquired and recorded, the phase information of the signal has to be “retrieved” from the data modulus only. Phase retrieval is an ill-posed non-linear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several linear phase recovery methods have been proposed and it is expected that some limitations resulting from the linearization of the direct problem will be overcome by taking into account the non-linearity of the phase problem. To achieve this goal, we propose and evaluate a non-linear algorithm for in-line phase micro-tomography based on an iterative Landweber method with an analytic calculation of the Fréchet derivative of the phase-intensity relationship and of its adjoint. The algorithm was applied in the projection space using as initialization the linear mixed solution. The efficacy of the regularization scheme was evaluated on simulated objects with a slowly and a strongly varying phase. Experimental data were also acquired at ESRF using a propagation-based X-ray imaging technique for the given pixel size 0.68 μm. Two regularization scheme were considered: first the initialization was obtained without any prior on the ratio of the real and imaginary parts of the complex refractive index and secondly a constant a priori value was assumed on ?. The tomographic central slices of the refractive index decrement were compared and numerical evaluation was performed. The non-linear method globally decreases the reconstruction errors compared to the linear algorithm and is achieving better reconstruction results if no prior is introduced in the initialization solution. For in-line phase micro-tomography, this non-linear approach is a new and interesting method in biomedical studies where the exact value of the a priori ratio is not known.展开更多
From the recent thirty years, scientists will never stop exploring the outer space. To assist the development of travelling into the universe, I devote myself into providing theoretical support and future indications ...From the recent thirty years, scientists will never stop exploring the outer space. To assist the development of travelling into the universe, I devote myself into providing theoretical support and future indications for designing the optimal orbit for satellite to travel in a Three-Body System. This paper offers the optimal orbit for satellite to change path in the earth-moon system. Also, it provides the path for the satellite to use the least fuel to go to the L4 and L5 Lagrange points. These inspiring results are obtained through several steps: to solve the problems caused by the non-linear character of Three-Body System, I use Koopman eigenfunction to change the system into a linear one. Data-driven method is adopted to find the most suitable Koopman eigenfunction to apply control. The traditional LQR operator for linear system is used to design the optimal orbit for the satellite.展开更多
A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle ...A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.展开更多
It is still a challenge to clarify the dependence of overall elastic properties of heterogeneous materials on the microstructures of non-elliposodal inhomogeneities (cracks, pores, foreign particles). From the theor...It is still a challenge to clarify the dependence of overall elastic properties of heterogeneous materials on the microstructures of non-elliposodal inhomogeneities (cracks, pores, foreign particles). From the theory of elasticity, the formulation of the perturbance elastic fields, coming from a non-ellipsoidal inhomogeneity embedded in an infinitely extended material with remote constant loading, inevitably involve one or more integral equations. Up to now, due to the mathematical difficulty, there is almost no explicit analytical solution obtained except for the ellipsoidal inhomo- geneity. In this paper, we point out the impossibility to trans- form this inhomogeneity problem into a conventional Eshelby problem by the equivalent inclusion method even if the eigenstrain is chosen to be non-uniform. We also build up an equivalent model, called the second Eshelby problem, to investigate the perturbance stress. It is probably a better template to make use of the profound methods and results of conventional Eshelby problems of non-ellipsoidal inclusions.展开更多
In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the B...In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two cases are obtained by using these methods and their results are shown in table.展开更多
By using Leray-Schauder nonlinear alternative, Banach contraction theorem and Guo-Krasnosel’skii theorem, we discuss the existence, uniqueness and positivity of solution to the third-order multi-point nonhomogeneous ...By using Leray-Schauder nonlinear alternative, Banach contraction theorem and Guo-Krasnosel’skii theorem, we discuss the existence, uniqueness and positivity of solution to the third-order multi-point nonhomogeneous boundary value problem (BVP1): where for The interesting point lies in the fact that the nonlinear term is allowed to depend on the first order derivative .展开更多
文摘Restrictions of classical mechanics which take place because of holonomic constraints hypothesis used for obtaining canonical Lagrange equation are analyzed. As it was shown that this hypothesis excludes non-linear terms in the expression for forces which are responsible for energy exchange between different degrees of freedom of a many-body system. An oscillator passing a potential barrier is considered as an example which demonstrated this fact. It was found that the oscillator can pass the barrier even if kinetic energy of its mass center is below the potential barrier’s height due to non-linear terms. This effect is lost because of holonomic constraints hypothesis. We also explained how one can derive a system’s motion equation without the use of holonomic constraints hypothesis. This equation can be used to describe non-linear irreversible processes within the frames of Newton’s laws.
文摘A variational formulation of the synthesis problem for plane radiating systems according to the prescribed power directivity pattern (DP) is considered. The function representing the mean-square deviation of the prescribed and synthesized power DPs and containing the additional term with squared norm of the current or field in the antenna aperture is considered as the criterion of optimization. Freedom to choose the phase DP is used to improve the proximity of the prescribed and synthesized DPs. In such formulation, the classes of non-linear problems, for which the non-uniqueness of solutions, their branching and bifurcation are characteristic, arise. The properties of solutions depend on the electric size of radiating system and prescribed power DP. From a practical point of view, the existence of different solutions creating the same or similar DPs, gives the opportunity to choose the solution that has a simpler implementation. The synthesis problems for plane radiating systems and plane arrays are considered.
文摘Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Bratu’s equation, Troesch’s problems) occurs engineering and science, including the modeling of chemical reactions diffusion processes and heat transfer. An analytical expression pertaining to the concentration of substrate is obtained using Homotopy perturbation method for all values of parameters. These approximate analytical results were found to be in good agreement with the simulation results.
文摘Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triaxial rigid bodies) and the bigger primary is a source of radiation. Moser’s conditions are utilized in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double D’Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability except for the three mass ratios μc1, μc2 and μc3, which depend upon the perturbations ε1 and ε1 in the Coriolis and centrifugal forces respectively and the parameters A1,A2,A3 and A4 which depend upon the semi-axes a1,b1,c1;a2,b2,c2 of the triaxial rigid bodies and p, the radiation parameter.
文摘This paper deals with the problem of the postbuckling response of a thin cantilever beam ofnon-linear material, subjected to subtangential follower forces. Based on the well-knownBernoulli-Euler bending moment-curvature relation, the proposed problem is reduced to a specialeigenvalue problem of non-linear differential equation. An approximate solution is achieved byusing a simple and very effective technique, which leads to reliable results even in the case of verylarge deflections. The initial postbuckling path depending on the subtangential follower forces inequilibrium is then obtained. Moreover, the individual and coupling effect of the subtangential fol-lower force, the material non-linearity and the beam slenderness ratio on the initial postbucklingpath are also discussed in detail.
文摘Phase imaging coupled to micro-tomography acquisition has emerged as a powerful tool to investigate specimens in a non-destructive manner. While the intensity data can be acquired and recorded, the phase information of the signal has to be “retrieved” from the data modulus only. Phase retrieval is an ill-posed non-linear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several linear phase recovery methods have been proposed and it is expected that some limitations resulting from the linearization of the direct problem will be overcome by taking into account the non-linearity of the phase problem. To achieve this goal, we propose and evaluate a non-linear algorithm for in-line phase micro-tomography based on an iterative Landweber method with an analytic calculation of the Fréchet derivative of the phase-intensity relationship and of its adjoint. The algorithm was applied in the projection space using as initialization the linear mixed solution. The efficacy of the regularization scheme was evaluated on simulated objects with a slowly and a strongly varying phase. Experimental data were also acquired at ESRF using a propagation-based X-ray imaging technique for the given pixel size 0.68 μm. Two regularization scheme were considered: first the initialization was obtained without any prior on the ratio of the real and imaginary parts of the complex refractive index and secondly a constant a priori value was assumed on ?. The tomographic central slices of the refractive index decrement were compared and numerical evaluation was performed. The non-linear method globally decreases the reconstruction errors compared to the linear algorithm and is achieving better reconstruction results if no prior is introduced in the initialization solution. For in-line phase micro-tomography, this non-linear approach is a new and interesting method in biomedical studies where the exact value of the a priori ratio is not known.
文摘From the recent thirty years, scientists will never stop exploring the outer space. To assist the development of travelling into the universe, I devote myself into providing theoretical support and future indications for designing the optimal orbit for satellite to travel in a Three-Body System. This paper offers the optimal orbit for satellite to change path in the earth-moon system. Also, it provides the path for the satellite to use the least fuel to go to the L4 and L5 Lagrange points. These inspiring results are obtained through several steps: to solve the problems caused by the non-linear character of Three-Body System, I use Koopman eigenfunction to change the system into a linear one. Data-driven method is adopted to find the most suitable Koopman eigenfunction to apply control. The traditional LQR operator for linear system is used to design the optimal orbit for the satellite.
文摘A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
基金supported by the National Natural Science Foundation of China (10872086 and 11072105)
文摘It is still a challenge to clarify the dependence of overall elastic properties of heterogeneous materials on the microstructures of non-elliposodal inhomogeneities (cracks, pores, foreign particles). From the theory of elasticity, the formulation of the perturbance elastic fields, coming from a non-ellipsoidal inhomogeneity embedded in an infinitely extended material with remote constant loading, inevitably involve one or more integral equations. Up to now, due to the mathematical difficulty, there is almost no explicit analytical solution obtained except for the ellipsoidal inhomo- geneity. In this paper, we point out the impossibility to trans- form this inhomogeneity problem into a conventional Eshelby problem by the equivalent inclusion method even if the eigenstrain is chosen to be non-uniform. We also build up an equivalent model, called the second Eshelby problem, to investigate the perturbance stress. It is probably a better template to make use of the profound methods and results of conventional Eshelby problems of non-ellipsoidal inclusions.
文摘In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two cases are obtained by using these methods and their results are shown in table.
文摘By using Leray-Schauder nonlinear alternative, Banach contraction theorem and Guo-Krasnosel’skii theorem, we discuss the existence, uniqueness and positivity of solution to the third-order multi-point nonhomogeneous boundary value problem (BVP1): where for The interesting point lies in the fact that the nonlinear term is allowed to depend on the first order derivative .