In order to simulate the coupling vibration of a vehicle or train moves on a multi-span continuous bridge with non-uniform cross sections, a moving mass model is used according to the Finite Element Method, the effect...In order to simulate the coupling vibration of a vehicle or train moves on a multi-span continuous bridge with non-uniform cross sections, a moving mass model is used according to the Finite Element Method, the effect of the inertial force, Coriolis force and centrifugal force are considered by means of the additive matrices. For a non-uniform rectangular section beam with both linear and parabolic variable heights in a plane, the stiffness and mass matrices of the beam elements are presented. For a non-uniform box girder, Romberg numerical integral scheme is adopted, each coefficient of the stiffness matrix is obtained by means of a normal numerical computation. By applying these elements to calculate the non-uniform beam, the computational accuracy and efficiency are improved. The finite element method program is worked out and an entire dynamic response process of the beam with non-uniform cross sections subjected to a moving mass is simulated numerically, the results are compared to those previously published for some simple examples. For some complex multi-span bridges subjected to some moving vehicles with changeable velocity and friction, the computational results, which can be regarded as a reference for engineering design and scientific research, are also given simultaneously.展开更多
A new method for recovering shape from cross-sectional contours with complexbranching structures is presented. First, each branching problem by providing an intermediatecontour using distance function and image proces...A new method for recovering shape from cross-sectional contours with complexbranching structures is presented. First, each branching problem by providing an intermediatecontour using distance function and image processing technology is solved. Then, all contours aredivided into several groups of simple contours. For each group, a NURBS curve is fitted to contourpoints in each section within a given accuracy on a common knot vector. Finally, the NURBS surfaceskinning of these contours is performed for providing a smooth geometric model. The method issuitable to reproduce the object by NC machining or rapid prototyping. Some results demonstrate itsusefulness and feasibility.展开更多
格库铁路青海段大部分处于偏远无人区,且区间无轨道电路,为检测断轨与减轻维护压力,设计了基于轨道电路原理的实时断轨检测系统。利用远距离无线电(Long Range Radio,LoRa)设计链式通信系统来传输报文,并进行理论指标验证;又在均匀传输...格库铁路青海段大部分处于偏远无人区,且区间无轨道电路,为检测断轨与减轻维护压力,设计了基于轨道电路原理的实时断轨检测系统。利用远距离无线电(Long Range Radio,LoRa)设计链式通信系统来传输报文,并进行理论指标验证;又在均匀传输线基础上得到轨道电路功率估计算式;随后,搭建信号发送系统,在室内利用模拟钢轨盘验证了使用功率估计区分断轨的可行性;最后,结合室内实验和链式通信系统搭建样机,现场测试验证了轨道电路功率估计算式的准确性。实验表明:利用轨道电路功率估计可有效、准确地完成断轨检测,室内和室外功率计算最小误差分别达1.06%和5.2%。相较于传统钢轨探伤方式,更适合在无人区非集中区段部署。展开更多
文摘In order to simulate the coupling vibration of a vehicle or train moves on a multi-span continuous bridge with non-uniform cross sections, a moving mass model is used according to the Finite Element Method, the effect of the inertial force, Coriolis force and centrifugal force are considered by means of the additive matrices. For a non-uniform rectangular section beam with both linear and parabolic variable heights in a plane, the stiffness and mass matrices of the beam elements are presented. For a non-uniform box girder, Romberg numerical integral scheme is adopted, each coefficient of the stiffness matrix is obtained by means of a normal numerical computation. By applying these elements to calculate the non-uniform beam, the computational accuracy and efficiency are improved. The finite element method program is worked out and an entire dynamic response process of the beam with non-uniform cross sections subjected to a moving mass is simulated numerically, the results are compared to those previously published for some simple examples. For some complex multi-span bridges subjected to some moving vehicles with changeable velocity and friction, the computational results, which can be regarded as a reference for engineering design and scientific research, are also given simultaneously.
基金Provincial Natural Science Foundation of Liaoning,China (No.20010102087)
文摘A new method for recovering shape from cross-sectional contours with complexbranching structures is presented. First, each branching problem by providing an intermediatecontour using distance function and image processing technology is solved. Then, all contours aredivided into several groups of simple contours. For each group, a NURBS curve is fitted to contourpoints in each section within a given accuracy on a common knot vector. Finally, the NURBS surfaceskinning of these contours is performed for providing a smooth geometric model. The method issuitable to reproduce the object by NC machining or rapid prototyping. Some results demonstrate itsusefulness and feasibility.
文摘格库铁路青海段大部分处于偏远无人区,且区间无轨道电路,为检测断轨与减轻维护压力,设计了基于轨道电路原理的实时断轨检测系统。利用远距离无线电(Long Range Radio,LoRa)设计链式通信系统来传输报文,并进行理论指标验证;又在均匀传输线基础上得到轨道电路功率估计算式;随后,搭建信号发送系统,在室内利用模拟钢轨盘验证了使用功率估计区分断轨的可行性;最后,结合室内实验和链式通信系统搭建样机,现场测试验证了轨道电路功率估计算式的准确性。实验表明:利用轨道电路功率估计可有效、准确地完成断轨检测,室内和室外功率计算最小误差分别达1.06%和5.2%。相较于传统钢轨探伤方式,更适合在无人区非集中区段部署。