The synthetic oil has been extensively used in the miniature bearing thanks to its good low-temperature fluidity. However, most of commercial synthetic oils cannot meet the requirements for operating at ultra-low temp...The synthetic oil has been extensively used in the miniature bearing thanks to its good low-temperature fluidity. However, most of commercial synthetic oils cannot meet the requirements for operating at ultra-low temperature, demanding that the lubricating oil should flow below -60℃ with its ISO VG being greater than 10 mm^2/s. In this paper, the relationships between the structures of the ester, polyether, and silicone oils, and low temperature fluidity were investigated. The results showed that the low-temperature fluidity of oil having a shorter molecular chain length and a smaller molecular weight became better. Moreover, except the silicone oil, other synthetic oil cannot reach the requirements for working at ultra-low temperature. Silicone oil has good low-temperature properties, but it has poor lubricating properties in an environment where steel is sliding against steel. Then based on the analytical results, a new type of non-Newtonian oil was developed. The test results showed that the fluidity of the newly developed oil at below -60℃ is much better than that of the commercial 4123, 4129 ester type aviation lubricants. In addition, it has good lubricating performance, which is much better than that of the silicone oil. The non-Newtonian oil demonstrates a promising prospect for application in miniature bearings operating at low load and ultra-low temperature.展开更多
Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short...Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short) is investigated. The results suggest that gearlubrication effects bear close relations to a dimensionless parameter D which is syntheticallydetermined by gearing rotational speed, load, material, dimension and lubricant viscosity. When D<=8, the gear fatigue life increases as the lubricant viscosity is increased; When D>8, however, thelife decreases with the viscosity addition, which is in marked contrast to the lubrication factorZ_L recommended by the International Standard for Computing Cylindrical Gear Strength. At the end, aset of formulae for calculating gear lubrication factors suitable for different working conditionsare advanced.展开更多
The effect of wall slip on the squeeze flow of a power-law fluid between two rigid spherical particles has been examined based on the Reynolds lubrication theory. It is shown that the viscous force arising from the sq...The effect of wall slip on the squeeze flow of a power-law fluid between two rigid spherical particles has been examined based on the Reynolds lubrication theory. It is shown that the viscous force arising from the squeeze flow with wall slip may be resolved to the no slip solution by introducing a slip correction coefficient. An expression for the slip correction coefficient of force is derived which is related to the slip parameter, the flow index and the upper limit of integration. Generally, wall slip results in a reduction in the viscous force. The reduction in the viscous force increases as the flow index increases, suggesting that wall slip has a more profound effect on shear thickening material. However, such reduction decreases as the upper limit of integration increases from finite liquid bridges to fully immersed systems. The reduction in the viscous force also increases as the slip parameter increases, which is the expected behaviour.展开更多
A generalized Reynolds' equation governing power-law non-Newtonian fluids and three dimensional elasticity equations corresponding to realistic three dimensional bearing geometries are numerically solved in this p...A generalized Reynolds' equation governing power-law non-Newtonian fluids and three dimensional elasticity equations corresponding to realistic three dimensional bearing geometries are numerically solved in this paper. An iterative scheme, which is called the weighted average method here, is used to deal with the iterative convergence of the three dimensional elastohydrodynamic lubrication equations. The scheme is successfully employed in overcoming the difficulty of the convergence at high eccentricity ratios. Inthis work, the influence of flow indices and bearing materials on the performance parameters of elastohydrodynamic lubrication for heavily-loaded finite journal bearings in non-Newtonian fluid are investigated.展开更多
Limitation and deficiency of main thcoogical models at present are descrital and analyzed, and seteralgeneral rheological models are discussed and compared with each other, and basic demands for a general model aresum...Limitation and deficiency of main thcoogical models at present are descrital and analyzed, and seteralgeneral rheological models are discussed and compared with each other, and basic demands for a general model aresummarized. The constitutive eqUation is proposetl for a new general theobocal model. The general medel feaaressimple structure and wide coverage, and can take the Place of many edsting thcofogical ed. The whel has suc-cessfully been used for Elastohydrodynamic lubrication calculation.展开更多
基金financial support from the National Twelfth Five-year Projects of China for Science and Technology under Contract D.50-0109-15-001
文摘The synthetic oil has been extensively used in the miniature bearing thanks to its good low-temperature fluidity. However, most of commercial synthetic oils cannot meet the requirements for operating at ultra-low temperature, demanding that the lubricating oil should flow below -60℃ with its ISO VG being greater than 10 mm^2/s. In this paper, the relationships between the structures of the ester, polyether, and silicone oils, and low temperature fluidity were investigated. The results showed that the low-temperature fluidity of oil having a shorter molecular chain length and a smaller molecular weight became better. Moreover, except the silicone oil, other synthetic oil cannot reach the requirements for working at ultra-low temperature. Silicone oil has good low-temperature properties, but it has poor lubricating properties in an environment where steel is sliding against steel. Then based on the analytical results, a new type of non-Newtonian oil was developed. The test results showed that the fluidity of the newly developed oil at below -60℃ is much better than that of the commercial 4123, 4129 ester type aviation lubricants. In addition, it has good lubricating performance, which is much better than that of the silicone oil. The non-Newtonian oil demonstrates a promising prospect for application in miniature bearings operating at low load and ultra-low temperature.
基金This project is supported by Provincial Natural Science Foundation of shanxi,China(No.20001047)
文摘Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short) is investigated. The results suggest that gearlubrication effects bear close relations to a dimensionless parameter D which is syntheticallydetermined by gearing rotational speed, load, material, dimension and lubricant viscosity. When D<=8, the gear fatigue life increases as the lubricant viscosity is increased; When D>8, however, thelife decreases with the viscosity addition, which is in marked contrast to the lubrication factorZ_L recommended by the International Standard for Computing Cylindrical Gear Strength. At the end, aset of formulae for calculating gear lubrication factors suitable for different working conditionsare advanced.
文摘The effect of wall slip on the squeeze flow of a power-law fluid between two rigid spherical particles has been examined based on the Reynolds lubrication theory. It is shown that the viscous force arising from the squeeze flow with wall slip may be resolved to the no slip solution by introducing a slip correction coefficient. An expression for the slip correction coefficient of force is derived which is related to the slip parameter, the flow index and the upper limit of integration. Generally, wall slip results in a reduction in the viscous force. The reduction in the viscous force increases as the flow index increases, suggesting that wall slip has a more profound effect on shear thickening material. However, such reduction decreases as the upper limit of integration increases from finite liquid bridges to fully immersed systems. The reduction in the viscous force also increases as the slip parameter increases, which is the expected behaviour.
文摘A generalized Reynolds' equation governing power-law non-Newtonian fluids and three dimensional elasticity equations corresponding to realistic three dimensional bearing geometries are numerically solved in this paper. An iterative scheme, which is called the weighted average method here, is used to deal with the iterative convergence of the three dimensional elastohydrodynamic lubrication equations. The scheme is successfully employed in overcoming the difficulty of the convergence at high eccentricity ratios. Inthis work, the influence of flow indices and bearing materials on the performance parameters of elastohydrodynamic lubrication for heavily-loaded finite journal bearings in non-Newtonian fluid are investigated.
文摘Limitation and deficiency of main thcoogical models at present are descrital and analyzed, and seteralgeneral rheological models are discussed and compared with each other, and basic demands for a general model aresummarized. The constitutive eqUation is proposetl for a new general theobocal model. The general medel feaaressimple structure and wide coverage, and can take the Place of many edsting thcofogical ed. The whel has suc-cessfully been used for Elastohydrodynamic lubrication calculation.