In this paper the Lie-form invariance of the non-holonomic systems with unilateral constraints is studied. The definition and the criterion of the Lie-form invariance of the system are given. The generalized Hojman co...In this paper the Lie-form invariance of the non-holonomic systems with unilateral constraints is studied. The definition and the criterion of the Lie-form invariance of the system are given. The generalized Hojman conserved quantity and a new type of conserved quantity deduced from the Lie-form invariance are obtained. Finally, an example is presented to illustrate the application of the results.展开更多
A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel fiat surfaces, is derived, together with non-holonomic constraints. B...A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel fiat surfaces, is derived, together with non-holonomic constraints. By referring to the fact that humans grasp an object in the form of precision prehension, dynamically and stably by opposable forces, between the thumb and another finger (index or middle finger), a simple control signal constructed from finger-thumb opposition is proposed, and shown to realize stable grasping in a dynamic sense without using object information or external sensing (this is called "blind grasp" in this paper). The stability of grasping with force/torque balance under non-holonomic constraints is analyzed on the basis of a new concept named "stability on a manifold". Preliminary simulation results are shown to verify the validity of the theoretical results.展开更多
The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of...The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of dynamics with non-linear andnon-holononlic constraints in one order for the system of the variable mass. From thesethe variant ddferential-equations of dynamics expressed by quasi-coordinates arederived. The fundamental equations of dynamics are compatible with the principle ofJourdain. A case is cited.展开更多
In this paper, the unified symmetry of non-holonomic singular systems is studied. The differential equations of motion of the systems are given. The definition and the criterion of the unified symmetry for the systems...In this paper, the unified symmetry of non-holonomic singular systems is studied. The differential equations of motion of the systems are given. The definition and the criterion of the unified symmetry for the systems are presented. The Noether conserved quantity, the Hojman conserved quantity and the Mei conserved quantity are obtained. An example is given to illustrate the application of the results.展开更多
The dot product of bases vectors on the super-surface of constraints of the nonlinear non-holonomic space and Mesherskii equations may act as the equations of fundamental dynamics of mechanical system for the variable...The dot product of bases vectors on the super-surface of constraints of the nonlinear non-holonomic space and Mesherskii equations may act as the equations of fundamental dynamics of mechanical system for the variable mass.These are very simple and convenient for computation.From these known equations,the equations of Chaplygin,Nielson,Appell,Mac-Millan et al.are deriv d;it is unnecessary to introduce the definition if Appell-Chetaev or Niu Qinping for the virtual displacement.These are compatible with the D'Alembert-Lagrange's principle.展开更多
From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relation...From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relationship among the kinetic control parameters in the snake like movement using Lie group and Lie algebra of the principle fiber bundle and provide some theoretical control methods to realize the snake like locomotion.展开更多
本文提出一种改进的快速扩展随机树(rapidly-exploring random trees,RRT)运动规划方法,用于非完整微分约束下的机器人运动规划.针对类似目标偏好与双向RRT(bi-directional RRT,bi-RRT)等目标区域导向的RRT运动规划所存在的局部极小问题...本文提出一种改进的快速扩展随机树(rapidly-exploring random trees,RRT)运动规划方法,用于非完整微分约束下的机器人运动规划.针对类似目标偏好与双向RRT(bi-directional RRT,bi-RRT)等目标区域导向的RRT运动规划所存在的局部极小问题,结合回归检测与碰撞检测机制,设计了一种碰撞检测与回归机制(collision-test and regression mechanism,CR)机制.该方法使得机器人在规划过程中能获取到全局障碍物信息,从而避免对已扩展节点的重复搜索,以及重复对边缘节点的回归测试和避障检测.该机制使得机器人可加快跳出局部极小区域,提高运动规划实的时性.将改进的RRT运动算法在容易产生局部极小值的环境中仿真测试,结果表明该算法在不显著影响其他性能的前提下,可以明显提高规划的实时性.展开更多
文摘In this paper the Lie-form invariance of the non-holonomic systems with unilateral constraints is studied. The definition and the criterion of the Lie-form invariance of the system are given. The generalized Hojman conserved quantity and a new type of conserved quantity deduced from the Lie-form invariance are obtained. Finally, an example is presented to illustrate the application of the results.
基金This work was supported in part by the Grant-in-Aid for Exploratory Research of the JSPS (No. 16656085).
文摘A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel fiat surfaces, is derived, together with non-holonomic constraints. By referring to the fact that humans grasp an object in the form of precision prehension, dynamically and stably by opposable forces, between the thumb and another finger (index or middle finger), a simple control signal constructed from finger-thumb opposition is proposed, and shown to realize stable grasping in a dynamic sense without using object information or external sensing (this is called "blind grasp" in this paper). The stability of grasping with force/torque balance under non-holonomic constraints is analyzed on the basis of a new concept named "stability on a manifold". Preliminary simulation results are shown to verify the validity of the theoretical results.
文摘The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of dynamics with non-linear andnon-holononlic constraints in one order for the system of the variable mass. From thesethe variant ddferential-equations of dynamics expressed by quasi-coordinates arederived. The fundamental equations of dynamics are compatible with the principle ofJourdain. A case is cited.
文摘In this paper, the unified symmetry of non-holonomic singular systems is studied. The differential equations of motion of the systems are given. The definition and the criterion of the unified symmetry for the systems are presented. The Noether conserved quantity, the Hojman conserved quantity and the Mei conserved quantity are obtained. An example is given to illustrate the application of the results.
文摘The dot product of bases vectors on the super-surface of constraints of the nonlinear non-holonomic space and Mesherskii equations may act as the equations of fundamental dynamics of mechanical system for the variable mass.These are very simple and convenient for computation.From these known equations,the equations of Chaplygin,Nielson,Appell,Mac-Millan et al.are deriv d;it is unnecessary to introduce the definition if Appell-Chetaev or Niu Qinping for the virtual displacement.These are compatible with the D'Alembert-Lagrange's principle.
文摘From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relationship among the kinetic control parameters in the snake like movement using Lie group and Lie algebra of the principle fiber bundle and provide some theoretical control methods to realize the snake like locomotion.
文摘本文提出一种改进的快速扩展随机树(rapidly-exploring random trees,RRT)运动规划方法,用于非完整微分约束下的机器人运动规划.针对类似目标偏好与双向RRT(bi-directional RRT,bi-RRT)等目标区域导向的RRT运动规划所存在的局部极小问题,结合回归检测与碰撞检测机制,设计了一种碰撞检测与回归机制(collision-test and regression mechanism,CR)机制.该方法使得机器人在规划过程中能获取到全局障碍物信息,从而避免对已扩展节点的重复搜索,以及重复对边缘节点的回归测试和避障检测.该机制使得机器人可加快跳出局部极小区域,提高运动规划实的时性.将改进的RRT运动算法在容易产生局部极小值的环境中仿真测试,结果表明该算法在不显著影响其他性能的前提下,可以明显提高规划的实时性.