The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Prop...The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Proportional(model I)overloading may cause more serious crack growth retardation than non-proportional(mixed mode)overloading.Therefore,for estimating the fatigue life of engineering structures to simplify a real overload which may of- ten be non-proportional as a proportional one is not always safe.展开更多
Based on the experimental study of complex biaxial mode Ⅰ fatigue crack growth and the discussion on Von Mises'theory,a new approach is proposed for correlating crack propaga- tion rate under both in-phase and ou...Based on the experimental study of complex biaxial mode Ⅰ fatigue crack growth and the discussion on Von Mises'theory,a new approach is proposed for correlating crack propaga- tion rate under both in-phase and out-of-phase biaxial stress cycling.The results emphasize the contribution of plasticity to fatigue crack growth.展开更多
文摘The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Proportional(model I)overloading may cause more serious crack growth retardation than non-proportional(mixed mode)overloading.Therefore,for estimating the fatigue life of engineering structures to simplify a real overload which may of- ten be non-proportional as a proportional one is not always safe.
文摘Based on the experimental study of complex biaxial mode Ⅰ fatigue crack growth and the discussion on Von Mises'theory,a new approach is proposed for correlating crack propaga- tion rate under both in-phase and out-of-phase biaxial stress cycling.The results emphasize the contribution of plasticity to fatigue crack growth.