In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the...In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the solution is given.展开更多
Micrometeorological data for wind and temperature from a 325 m high tower in Beijing City are analyzed by use of local similarity theory. Non-dimensional wind and temperature gradients, Phi(m) and Phi(h), are determin...Micrometeorological data for wind and temperature from a 325 m high tower in Beijing City are analyzed by use of local similarity theory. Non-dimensional wind and temperature gradients, Phi(m) and Phi(h), are determined by three techniques called, respectively, eddy-correlation, mean profiles and inertia-subrange cospectra (ISC) method for a wide range of atmospheric stratification from unstable to stable conditions. Average dissipation rate Phi(e) of turbulent kinetic energy (TKE) is evaluated from u-spectrum, as a quantity required in the last technique. Ratio of the eddy transfer coefficients, alpha(= K-h / K-m), is calculated from Phi(m) and Phi(h) estimations. The results from various techniques are compared with each other and with some available empirical results in the tower-layer, It is shown that the empirical relationships determined by mean profiles and ISC methods in the lower-layer turbulence ore in agreement with each other and with some other results.展开更多
In this paper, we provide a pathwise spine decomposition for multitype superdiffusions with nonlocal branching mechanisms under a martingale change of measure. As an application of this decomposition,we obtain a neces...In this paper, we provide a pathwise spine decomposition for multitype superdiffusions with nonlocal branching mechanisms under a martingale change of measure. As an application of this decomposition,we obtain a necessary and sufficient condition(called the L log L criterion) for the limit of the fundamental martingale to be non-degenerate. This result complements the related results obtained in Kyprianou et al.(2012),Kyprianou and Murillo-Salas(2013) and Liu et al.(2009) for superprocesses with purely local branching mechanisms and in Kyprianou and Palau(2018) for super Markov chains.展开更多
The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model). To consider the impact of...The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model). To consider the impact of clouds on the turbulence production, the turbulence mixing term, driven by radiative cooling at the cloud top, is implemented as an extended non-local diffusion scheme. In the model with this new scheme, the STBL parameterization significantly influences the lower atmosphere over the tropical and subtropical regions. Consideration of the turbulent mixing within the cloud layer leads to continuous stratocumulus formation. The cloud-top radiative cooling tends to favor more rapid entrainment and produces top-down turbulent mixing. This cooling develops a mixed layer without initiation of deep convection by surface fluxes. Variations in thermodynamical and dynamical features are produced by planetary boundary layer (PBL) cloud development. The simulated stratocumulus induces more mixing of heat and moisture due to the cloud forcing. Over STBL regions, the lower boundary layer becomes warmer and drier. It also weakens vertical motion and zonal trade winds in the eastern Pacific, which indicates that stratocumulus cloud cover plays a role in weakening the Walker circulation; that is, cloud cover damps the tropical circulation.展开更多
Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has prove...Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.展开更多
文摘In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the solution is given.
基金Supported by the National Natural Science Foundation of China under Grant! No.49735170.
文摘Micrometeorological data for wind and temperature from a 325 m high tower in Beijing City are analyzed by use of local similarity theory. Non-dimensional wind and temperature gradients, Phi(m) and Phi(h), are determined by three techniques called, respectively, eddy-correlation, mean profiles and inertia-subrange cospectra (ISC) method for a wide range of atmospheric stratification from unstable to stable conditions. Average dissipation rate Phi(e) of turbulent kinetic energy (TKE) is evaluated from u-spectrum, as a quantity required in the last technique. Ratio of the eddy transfer coefficients, alpha(= K-h / K-m), is calculated from Phi(m) and Phi(h) estimations. The results from various techniques are compared with each other and with some available empirical results in the tower-layer, It is shown that the empirical relationships determined by mean profiles and ISC methods in the lower-layer turbulence ore in agreement with each other and with some other results.
基金supported by Simons Foundation (Grant No. 520542)a Victor Klee Faculty Fellowship and National Natural Science Foundation of China (Grant No. 11731009)+2 种基金supported by National Natural Science Foundation of China (Grant Nos. 11671017 and 11731009)Key Laboratory of Mathematical Economics and Quantitative Finance (LMEQF) (Peking University),Ministry of Educationsupported by the Simons Foundation (Grant No. #429343)
文摘In this paper, we provide a pathwise spine decomposition for multitype superdiffusions with nonlocal branching mechanisms under a martingale change of measure. As an application of this decomposition,we obtain a necessary and sufficient condition(called the L log L criterion) for the limit of the fundamental martingale to be non-degenerate. This result complements the related results obtained in Kyprianou et al.(2012),Kyprianou and Murillo-Salas(2013) and Liu et al.(2009) for superprocesses with purely local branching mechanisms and in Kyprianou and Palau(2018) for super Markov chains.
基金supported by Ministry of Environment of Korea as "The Eco-technopia 21 Project"supported by Pusan National University under the "Post-Doc. 2008 Program"
文摘The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model). To consider the impact of clouds on the turbulence production, the turbulence mixing term, driven by radiative cooling at the cloud top, is implemented as an extended non-local diffusion scheme. In the model with this new scheme, the STBL parameterization significantly influences the lower atmosphere over the tropical and subtropical regions. Consideration of the turbulent mixing within the cloud layer leads to continuous stratocumulus formation. The cloud-top radiative cooling tends to favor more rapid entrainment and produces top-down turbulent mixing. This cooling develops a mixed layer without initiation of deep convection by surface fluxes. Variations in thermodynamical and dynamical features are produced by planetary boundary layer (PBL) cloud development. The simulated stratocumulus induces more mixing of heat and moisture due to the cloud forcing. Over STBL regions, the lower boundary layer becomes warmer and drier. It also weakens vertical motion and zonal trade winds in the eastern Pacific, which indicates that stratocumulus cloud cover plays a role in weakening the Walker circulation; that is, cloud cover damps the tropical circulation.
基金Supported by National Natural Science Foundation of China(Grant No.51705491)
文摘Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.