Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this ...Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.展开更多
Geometrical nonlinearity of the soft soil and the deviation of water flow in the soft clay from Darcy's law have been well recognized in practice. However, the theory of consolidation, which can account for both t...Geometrical nonlinearity of the soft soil and the deviation of water flow in the soft clay from Darcy's law have been well recognized in practice. However, the theory of consolidation, which can account for both the geometrical nonlinearity and the non-Darcian flow, has not been reported so far. In this contribution, a model for the consolidation of soft clay which can allow for these two factors simultaneously is proposed. Utilizing the finite difference method, the numerical model for this problem is developed. With the numerical model, the effects of the geometrical nonlinearity and the non-Darcian flow on the consolidation of the soft soil are investigated. The results show that when the self-weight stress is calculated by the same method, the rate of the non-Darcian consolidation for the large-strain case is larger than that for the small-strain case, but the difference between them is limited. However, the difference between the consolidation rates caused by the non-Darcian and Darcian flows is significant. Therefore, when the geometrical nonlinearity of the soft clay is considered in calculating the consolidation settlement, due to the complexity of the large-strain assumption, the small-strain assumption can be used to replace it if the self-weight stress for the small-strain assumption is calculated by considering its sedimentation. However, due to the aforementioned large difference between the consolidation rates with consideration of the non-Darcian flow in soft clay or not, it is better to consider the non-Darcian flow law for both the small and large stain assumptions.展开更多
Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference met...Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference method (FDM) was adopted to obtain numerical solutions for excess pore water pressure and average degree of consolidation. When non-Darcian flow is degenerated into Darcian flow, a comparison between numerical solutions and analytical solutions was made to verify reliability of finite difference solutions. Finally, taking into account the ramp time-dependent loading, consolidation behaviors with non-Darcian flow under various parameters were analyzed. Thus, a comprehensive analysis of 1D consolidation combined with non-Darcian flow caused by non-Newtonian liquid was conducted in this paper.展开更多
The motion of incompressible fluid of a variable fluid viscosity and variable thermal conductivity with thermal radiation, Dufour, Soret with heat and mass transfer over a linearly moving porous vertical semi-infinite...The motion of incompressible fluid of a variable fluid viscosity and variable thermal conductivity with thermal radiation, Dufour, Soret with heat and mass transfer over a linearly moving porous vertical semi-infinite plate with suction is investigated. The governing equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations with dimensionless variables and solved numerically using shooting method with Runge-Kutta fourth-order method and Newton-Raphson’s interpolation scheme implemented in MATLAB. The result showed that with increase in Dufour and Soret parameter, fluid velocity increases and temperature increases with increase in variation of Dufour while, temperature decreases with increase in Soret. The effects of variable fluid viscosity, variable thermal conductivity, thermal radiation, Soret, Dufour, Prandtl and Schmidt parameters on the dimensionless velocity, temperature and concentration profiles are shown graphically.展开更多
Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Car...Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Carlo simulations of water flow through DFNs to identify non-Darcian flow and non-Fickian pressure propagation in field-scale DFNs, by adjusting fracture density, matrix hydraulic conductivity, and the general hydraulic gradient. Numerical simulations and analyses show that interactions of the fracture architecture with the hydraulic gradient affect non-Darcian flow in DFNs, by generating and adjusting complex pathways for water. The fracture density affects significantly the propagation of hydraulic head/pressure in the DFN, likely due to fracture connectivity and flow channeling. The non-Darcian flow pattern may not be directly correlated to the non-Fickian pressure propagation process in the regional-scale DFNs, because they refer to different states of water flow and their controlling factors may not be the same. Findings of this study improve our understanding of the nature of flow in DFNs.展开更多
The article investigates the influences of a variable thermal conductivity and wall slip on a peristaltic motion of Carreau nanofluid. The model is concerned with heat and mass transfer inside asymmetric channel. The ...The article investigates the influences of a variable thermal conductivity and wall slip on a peristaltic motion of Carreau nanofluid. The model is concerned with heat and mass transfer inside asymmetric channel. The blood is considered as the base Carreau non-Newtonian fluid and gold (Au) as nanoparticles stressed upon. The Fronchiener effect of the non-Darcian medium is taken in consideration. The system is stressed upon a strong magnetic field and the Hall currents are completed. The problem is modulated mathematically by a system of non-linear partial differential equations which describe the fluid velocity, temperature and concentration. The system is reformulated under the approximation of long wavelength and low Reynolds number. It is solved on using multi-step differential transform method (Ms-DTM) as a semi-analytical method. A gold nanoparticle has increased the temperature distribution which is of great importance in destroying the cancer cells.展开更多
In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model recons...In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model reconstructs the time series of traffic flow in the phase space firstly, and the correlative information in the traffic flow is extracted richly, on the basis of it, a predicted equation for the reconstructed information is established by using chaotic theory, and for the purpose of obtaining the optimal predicted results, recognition and optimization to the model parameters are done by using genetic algorithm. Practical prediction research of urban traffic flow shows that this model has famous predicted precision, and it can provide exact reference for urban traffic programming and control.展开更多
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne...Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.展开更多
Well testing is recognized as an effective means of accurately obtaining the formation parameters of low-permeability reservoirs and effectively analyzing the deliverability.Well test models must comply with the parti...Well testing is recognized as an effective means of accurately obtaining the formation parameters of low-permeability reservoirs and effectively analyzing the deliverability.Well test models must comply with the particular characteristics of flow in low-permeability reservoirs in order to obtain reasonable well test interpretation.At present,non-Darcy flow in low-permeability reservoirs is attracting much attention.In this study,displacement tests were conducted on typical cores taken from low-permeability reservoirs.Two dimensionless variables were introduced to analyze the collected experimental data.The results of the dimensionless analysis show whether non-Darcy flow happens or not depends on the properties of fluid and porous media and the pressure differential.The combination of the above three parameters was named as dimensionless criteria coefficient(DCC).When the value of the DCC was lower than a critical Reynolds number(CRN),the flow could not be well described by Darcy's law(so-called non-Darcy flow),when the DCC was higher than CRN,the flow obeyed Darcy's law.Finally,this paper establishes a transient mathematical model considering Darcy flow and non-Darcy flow in low-permeability reservoirs,and proposes a methodology to solve the model.The solution technique,which is based on the Boltzmann transformation,is well suited for solving the flow model of low-permeability reservoirs.Based on the typical curves analysis,it was found that the pressure and its derivative curves were determined by such parameters as non-Darcy flow index and the flow characteristics.The results can be used for well test analysis of low-permeability reservoirs.展开更多
A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to T...A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results isvisualized. The results show the main flow characteristics: There exists backflow and aberrantvelocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern isdiscerned around the shroud-suction side area; The relative velocity vector of solid phase iscloser to the pressure surface than that of liquid phase and the trend is more obvious with theincrease of diameter; The kinetic energy of turbulence k and the dissipation rate e reach theirpeaks at the corner of pressure and suction surface. The simulation results show a good agreementwith the experimental flow features in the impeller channel, which prove the turbulent model used isvalid and provide a theoretical design basis to non-clogging pumps.展开更多
For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. Th...For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. The results show that, at casting speeds of 0.8 and 1.0 m/min, a thin liquid mold flux layer forms and non-uniform floating of argon bubbles occurs, inducing the entrainment and subsequent entrapment of the liquid flux; fine inclusion particles of Al_2O_3 can also aggregate at the solidification front. At higher casting speeds of 1.4 and 1.6 m/min, the liquid mold flux can be entrained and carried deeper into the liquid steel pool because of strong level fluctuations of the liquid steel and the flux. The optimal casting speed is approximately 1.2 m/min, with the most favorable surface flow status and, correspondingly, the lowest number of inclusions near the slab surface.展开更多
Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or ca...Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity.展开更多
In this paper, the mechanism for fluid flow at low velocity in a porous medium is analyzed based on plastic flow of oil in a reservoir and the fractal approach. The analytical expressions for flow rate and velocity of...In this paper, the mechanism for fluid flow at low velocity in a porous medium is analyzed based on plastic flow of oil in a reservoir and the fractal approach. The analytical expressions for flow rate and velocity of non-Newtonian fluid flow in the low permeability porous medium are derived, and the threshold pressure gradient (TPG) is also obtained. It is notable that the TPG (J) and permeability (K) of the porous medium analytically exhibit the scaling behavior J ~ K-D'r/(l+Or), where DT is the fractal dimension for tortuous capillaries. The fractal characteristics of tortuosity for capillaries should be considered in analysis of non-Darcy flow in a low permeability porous medium. The model predictions of TPG show good agreement with those obtained by the available expression and experimental data. The proposed model may be conducible to a better understanding of the mechanism for nonlinear flow in the low permeability porous medium.展开更多
Many problems in petroleum and chemical industry can be reduced to the solution of the helical flow of non-Newtonian fluid in eccentric annular space. The laminar helical flows of the power law fluid and Bingham fluid...Many problems in petroleum and chemical industry can be reduced to the solution of the helical flow of non-Newtonian fluid in eccentric annular space. The laminar helical flows of the power law fluid and Bingham fluid in eccentric annular space were studied. An approximate analytical solution was obtained by the infinite subdivision method, namely, the eccentric flow was replaced by the infinite concentric flows. Then, the expressions for apparent viscosity distribution, velocity distribution and the flow rate were derived for the power law fluid and the Bingham fluid respectively. In addition, the expressions for pressure drop and stability parameter were also given. It is concluded that this method is much easier to use and more accurate than the method which solves the equations directly. The results are useful for the drilling technology of oil industry, etc.展开更多
The paper deals with the fluid field of web forming in wet-laid non-woven production.The influence of the turbulent flow on blending fiber and occluded fluid produced in pulp flow has been discussed in theory and prac...The paper deals with the fluid field of web forming in wet-laid non-woven production.The influence of the turbulent flow on blending fiber and occluded fluid produced in pulp flow has been discussed in theory and practice.The suitable use of the imported velocity of pulp is very important in producing wet-laid products of good quality.展开更多
New approximate analytical solutions for steady flow in parallel-plates channels filled with porous materials governed by non-linear Brinkman-Forchheimer extended Darcy model for three different physical situations ar...New approximate analytical solutions for steady flow in parallel-plates channels filled with porous materials governed by non-linear Brinkman-Forchheimer extended Darcy model for three different physical situations are presented. These results are compared with those obtained from an implicit finite-difference solution of the corresponding time dependent flow problem. It is seen that the time dependent flow solutions yield the almost same steady state values as obtained by using the new approximate analytical展开更多
This paper describes an experimental work in order to assess the efficiency of slit dam on non-viscous debris flow. Some results have been acquired as follows: (1) there are three kinds of blocking type; Total-bloc...This paper describes an experimental work in order to assess the efficiency of slit dam on non-viscous debris flow. Some results have been acquired as follows: (1) there are three kinds of blocking type; Total-blocking, opening and part-blocking. The blocking conditions of slit dam are closely link to b/dmax (the ratio of slit width to maximum diameter of solid matter), as b/dmax is less than 0. 739, the slit dam is total- blocking; and b/dmax is more than 1. 478, the slit dam will be opening; whereas b/dma ranges from 0. 739 to 1. 478, the slit dam is part-blocking. (2) Variation of the mean density passing through slit dam is the most obvious as b/dmax ranges from 0. 739 to 1. 232. (2) According to experimental results, slit dams have been shown to be effective in reducing debris flow density while slit density ∑ b/B (B is slit dam width) ranges from 0.2 to 0. 5.展开更多
In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be sma...In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be small, so that the effect of particles on the carrier phase is significant only inside the boundary layer where the particles accumulate. Stepshaped and harmonic nonuniformities of the particle concentration ahead of the bow shock wave are considered and the corresponding nonstationary distributions of the particle concentration in the shock layer are studied. On the basis of numerical study of nonstationary two-phase boundary layer equations derived by the matched asymptotic expansion method, the effects of free-stream particle concentration nonuniformities on the thermal flux, and the friction coefficient in the neighborhood of stagnation point are investigated, in particular, the most “dangerous” nonuniformity periods are found.展开更多
The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the...The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the feasibility of reproducing these velocity fields with computer models. If computer modeling were to prove successful in this context, it could become a useful prediction technique and research tool to enhance our understanding of natural river dynamics. A 3-D k-E turbulence hydrodynamic model in curvilinear coordinates is established to simulate the overhank flow. The bodyfitted coordinate is adopted in the horizontal plane, the part grid is adopted in the vertical direction, and the wall-function method is employed to simulate the bed resistance. The model is applied to the simulation of the meandering channel with straight flood plain banks, and the main velocities and secondary velocities for both the longitudinal and cross sections are presented. Comparison and analysis show that the results of simulation are fit to reflect the results of experiment. These results show the application value of the model to 3D overhank flow.展开更多
文摘Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.
基金Projects(51109092,11272137)supported by the National Natural Science Foundation of ChinaProjects(2013M530237,2014T70479)supported by China Postdoctoral Science FoundationProject(SJLX15-0498)supported by Jiangsu Provincial Graduate Students Research and Innovation Program,China
文摘Geometrical nonlinearity of the soft soil and the deviation of water flow in the soft clay from Darcy's law have been well recognized in practice. However, the theory of consolidation, which can account for both the geometrical nonlinearity and the non-Darcian flow, has not been reported so far. In this contribution, a model for the consolidation of soft clay which can allow for these two factors simultaneously is proposed. Utilizing the finite difference method, the numerical model for this problem is developed. With the numerical model, the effects of the geometrical nonlinearity and the non-Darcian flow on the consolidation of the soft soil are investigated. The results show that when the self-weight stress is calculated by the same method, the rate of the non-Darcian consolidation for the large-strain case is larger than that for the small-strain case, but the difference between them is limited. However, the difference between the consolidation rates caused by the non-Darcian and Darcian flows is significant. Therefore, when the geometrical nonlinearity of the soft clay is considered in calculating the consolidation settlement, due to the complexity of the large-strain assumption, the small-strain assumption can be used to replace it if the self-weight stress for the small-strain assumption is calculated by considering its sedimentation. However, due to the aforementioned large difference between the consolidation rates with consideration of the non-Darcian flow in soft clay or not, it is better to consider the non-Darcian flow law for both the small and large stain assumptions.
基金Supported by the National Natural Science Foundation of China (51109092,50878191)
文摘Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference method (FDM) was adopted to obtain numerical solutions for excess pore water pressure and average degree of consolidation. When non-Darcian flow is degenerated into Darcian flow, a comparison between numerical solutions and analytical solutions was made to verify reliability of finite difference solutions. Finally, taking into account the ramp time-dependent loading, consolidation behaviors with non-Darcian flow under various parameters were analyzed. Thus, a comprehensive analysis of 1D consolidation combined with non-Darcian flow caused by non-Newtonian liquid was conducted in this paper.
文摘The motion of incompressible fluid of a variable fluid viscosity and variable thermal conductivity with thermal radiation, Dufour, Soret with heat and mass transfer over a linearly moving porous vertical semi-infinite plate with suction is investigated. The governing equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations with dimensionless variables and solved numerically using shooting method with Runge-Kutta fourth-order method and Newton-Raphson’s interpolation scheme implemented in MATLAB. The result showed that with increase in Dufour and Soret parameter, fluid velocity increases and temperature increases with increase in variation of Dufour while, temperature decreases with increase in Soret. The effects of variable fluid viscosity, variable thermal conductivity, thermal radiation, Soret, Dufour, Prandtl and Schmidt parameters on the dimensionless velocity, temperature and concentration profiles are shown graphically.
文摘Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Carlo simulations of water flow through DFNs to identify non-Darcian flow and non-Fickian pressure propagation in field-scale DFNs, by adjusting fracture density, matrix hydraulic conductivity, and the general hydraulic gradient. Numerical simulations and analyses show that interactions of the fracture architecture with the hydraulic gradient affect non-Darcian flow in DFNs, by generating and adjusting complex pathways for water. The fracture density affects significantly the propagation of hydraulic head/pressure in the DFN, likely due to fracture connectivity and flow channeling. The non-Darcian flow pattern may not be directly correlated to the non-Fickian pressure propagation process in the regional-scale DFNs, because they refer to different states of water flow and their controlling factors may not be the same. Findings of this study improve our understanding of the nature of flow in DFNs.
文摘The article investigates the influences of a variable thermal conductivity and wall slip on a peristaltic motion of Carreau nanofluid. The model is concerned with heat and mass transfer inside asymmetric channel. The blood is considered as the base Carreau non-Newtonian fluid and gold (Au) as nanoparticles stressed upon. The Fronchiener effect of the non-Darcian medium is taken in consideration. The system is stressed upon a strong magnetic field and the Hall currents are completed. The problem is modulated mathematically by a system of non-linear partial differential equations which describe the fluid velocity, temperature and concentration. The system is reformulated under the approximation of long wavelength and low Reynolds number. It is solved on using multi-step differential transform method (Ms-DTM) as a semi-analytical method. A gold nanoparticle has increased the temperature distribution which is of great importance in destroying the cancer cells.
文摘In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model reconstructs the time series of traffic flow in the phase space firstly, and the correlative information in the traffic flow is extracted richly, on the basis of it, a predicted equation for the reconstructed information is established by using chaotic theory, and for the purpose of obtaining the optimal predicted results, recognition and optimization to the model parameters are done by using genetic algorithm. Practical prediction research of urban traffic flow shows that this model has famous predicted precision, and it can provide exact reference for urban traffic programming and control.
基金Project“973",a national fundamental research development program
文摘Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.
基金supported by the National Natural Science Foundation of China(Grant No.40974055)the National Key Technology R&D Program in the 11th Five-Year Plan Period(Grant No.2008ZX05030-005-03)
文摘Well testing is recognized as an effective means of accurately obtaining the formation parameters of low-permeability reservoirs and effectively analyzing the deliverability.Well test models must comply with the particular characteristics of flow in low-permeability reservoirs in order to obtain reasonable well test interpretation.At present,non-Darcy flow in low-permeability reservoirs is attracting much attention.In this study,displacement tests were conducted on typical cores taken from low-permeability reservoirs.Two dimensionless variables were introduced to analyze the collected experimental data.The results of the dimensionless analysis show whether non-Darcy flow happens or not depends on the properties of fluid and porous media and the pressure differential.The combination of the above three parameters was named as dimensionless criteria coefficient(DCC).When the value of the DCC was lower than a critical Reynolds number(CRN),the flow could not be well described by Darcy's law(so-called non-Darcy flow),when the DCC was higher than CRN,the flow obeyed Darcy's law.Finally,this paper establishes a transient mathematical model considering Darcy flow and non-Darcy flow in low-permeability reservoirs,and proposes a methodology to solve the model.The solution technique,which is based on the Boltzmann transformation,is well suited for solving the flow model of low-permeability reservoirs.Based on the typical curves analysis,it was found that the pressure and its derivative curves were determined by such parameters as non-Darcy flow index and the flow characteristics.The results can be used for well test analysis of low-permeability reservoirs.
文摘A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results isvisualized. The results show the main flow characteristics: There exists backflow and aberrantvelocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern isdiscerned around the shroud-suction side area; The relative velocity vector of solid phase iscloser to the pressure surface than that of liquid phase and the trend is more obvious with theincrease of diameter; The kinetic energy of turbulence k and the dissipation rate e reach theirpeaks at the corner of pressure and suction surface. The simulation results show a good agreementwith the experimental flow features in the impeller channel, which prove the turbulent model used isvalid and provide a theoretical design basis to non-clogging pumps.
基金financially supported by the National Natural Science Foundation of China (No. 51674069)the National Key R & D Program of China (No. 2017YFC0805100)
文摘For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. The results show that, at casting speeds of 0.8 and 1.0 m/min, a thin liquid mold flux layer forms and non-uniform floating of argon bubbles occurs, inducing the entrainment and subsequent entrapment of the liquid flux; fine inclusion particles of Al_2O_3 can also aggregate at the solidification front. At higher casting speeds of 1.4 and 1.6 m/min, the liquid mold flux can be entrained and carried deeper into the liquid steel pool because of strong level fluctuations of the liquid steel and the flux. The optimal casting speed is approximately 1.2 m/min, with the most favorable surface flow status and, correspondingly, the lowest number of inclusions near the slab surface.
基金supported by the National Natural Science Foundation Project (No.40772088)the National Basic Research Program ("973" Program,Grant No. 2006CB202305)
文摘Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity.
基金Project supported by the National Natural Science Foundation of China(Grant No.41102080)the Fundamental Research Funds for the Central Universities,China(Grant Nos.CUG130404 and CUG130103)the Fund from the Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education,China University of Geosciences(Wuhan),China(Grant No.TPR-2013-18)
文摘In this paper, the mechanism for fluid flow at low velocity in a porous medium is analyzed based on plastic flow of oil in a reservoir and the fractal approach. The analytical expressions for flow rate and velocity of non-Newtonian fluid flow in the low permeability porous medium are derived, and the threshold pressure gradient (TPG) is also obtained. It is notable that the TPG (J) and permeability (K) of the porous medium analytically exhibit the scaling behavior J ~ K-D'r/(l+Or), where DT is the fractal dimension for tortuous capillaries. The fractal characteristics of tortuosity for capillaries should be considered in analysis of non-Darcy flow in a low permeability porous medium. The model predictions of TPG show good agreement with those obtained by the available expression and experimental data. The proposed model may be conducible to a better understanding of the mechanism for nonlinear flow in the low permeability porous medium.
文摘Many problems in petroleum and chemical industry can be reduced to the solution of the helical flow of non-Newtonian fluid in eccentric annular space. The laminar helical flows of the power law fluid and Bingham fluid in eccentric annular space were studied. An approximate analytical solution was obtained by the infinite subdivision method, namely, the eccentric flow was replaced by the infinite concentric flows. Then, the expressions for apparent viscosity distribution, velocity distribution and the flow rate were derived for the power law fluid and the Bingham fluid respectively. In addition, the expressions for pressure drop and stability parameter were also given. It is concluded that this method is much easier to use and more accurate than the method which solves the equations directly. The results are useful for the drilling technology of oil industry, etc.
文摘The paper deals with the fluid field of web forming in wet-laid non-woven production.The influence of the turbulent flow on blending fiber and occluded fluid produced in pulp flow has been discussed in theory and practice.The suitable use of the imported velocity of pulp is very important in producing wet-laid products of good quality.
文摘New approximate analytical solutions for steady flow in parallel-plates channels filled with porous materials governed by non-linear Brinkman-Forchheimer extended Darcy model for three different physical situations are presented. These results are compared with those obtained from an implicit finite-difference solution of the corresponding time dependent flow problem. It is seen that the time dependent flow solutions yield the almost same steady state values as obtained by using the new approximate analytical
文摘This paper describes an experimental work in order to assess the efficiency of slit dam on non-viscous debris flow. Some results have been acquired as follows: (1) there are three kinds of blocking type; Total-blocking, opening and part-blocking. The blocking conditions of slit dam are closely link to b/dmax (the ratio of slit width to maximum diameter of solid matter), as b/dmax is less than 0. 739, the slit dam is total- blocking; and b/dmax is more than 1. 478, the slit dam will be opening; whereas b/dma ranges from 0. 739 to 1. 478, the slit dam is part-blocking. (2) Variation of the mean density passing through slit dam is the most obvious as b/dmax ranges from 0. 739 to 1. 232. (2) According to experimental results, slit dams have been shown to be effective in reducing debris flow density while slit density ∑ b/B (B is slit dam width) ranges from 0.2 to 0. 5.
基金The project supported by the Russian Foundation for Basic Research(project No.96-01-00313)the National Natural Science Foundation of China(joint RFBR-NSFC grant No.96-01-00017c)
文摘In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be small, so that the effect of particles on the carrier phase is significant only inside the boundary layer where the particles accumulate. Stepshaped and harmonic nonuniformities of the particle concentration ahead of the bow shock wave are considered and the corresponding nonstationary distributions of the particle concentration in the shock layer are studied. On the basis of numerical study of nonstationary two-phase boundary layer equations derived by the matched asymptotic expansion method, the effects of free-stream particle concentration nonuniformities on the thermal flux, and the friction coefficient in the neighborhood of stagnation point are investigated, in particular, the most “dangerous” nonuniformity periods are found.
文摘The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the feasibility of reproducing these velocity fields with computer models. If computer modeling were to prove successful in this context, it could become a useful prediction technique and research tool to enhance our understanding of natural river dynamics. A 3-D k-E turbulence hydrodynamic model in curvilinear coordinates is established to simulate the overhank flow. The bodyfitted coordinate is adopted in the horizontal plane, the part grid is adopted in the vertical direction, and the wall-function method is employed to simulate the bed resistance. The model is applied to the simulation of the meandering channel with straight flood plain banks, and the main velocities and secondary velocities for both the longitudinal and cross sections are presented. Comparison and analysis show that the results of simulation are fit to reflect the results of experiment. These results show the application value of the model to 3D overhank flow.