Motivation is an important factor to English learning,it plays an important role.In this thesis,the instrument used in the study is a questionnaire,and this thesis was conducted on December 5th,2016 at Ningbo Dahongyi...Motivation is an important factor to English learning,it plays an important role.In this thesis,the instrument used in the study is a questionnaire,and this thesis was conducted on December 5th,2016 at Ningbo Dahongying University involving 182 students.Based on the questionnaire investigation,this thesis discusses the learning motivation of English major juniors and seniors in Ningbo Dahongying University from the motivation types,factors and strategies.展开更多
Objective: Differences in jobs descriptions and responsibilities may contribute to varying degree of exposure to diseases including high blood pressure. There is dearth of studies comparing blood pressure patterns and...Objective: Differences in jobs descriptions and responsibilities may contribute to varying degree of exposure to diseases including high blood pressure. There is dearth of studies comparing blood pressure patterns and anthropometric parameters between teaching and non-teaching staff of university. Therefore, this study was designed to assess and compare the blood pressure and the anthropometric parameters of both teaching and non-teaching staff of a Nigerian university. Materials and Methods: A cross-sectional study was conducted to assess blood pressure pattern and anthropometric parameters among 324 apparently healthy teaching (n = 120) and non-teaching (n = 202) staff of Obafemi Awolowo University, Ile-Ife, Nigeria. Anthropometric parameters including height, weight and hip and waist circumferences were measured. Blood pressure was measured thrice during office hours (9.00 - 11.00 hours) using standard procedures and hypertension was defined as ≥140 ≥90 mmHg. Descriptive and inferential statistics were used to analyze the data at p < 0.05 alpha level. Results: The mean of ages of teaching and non-teaching staff were 46.8 ± 9.8 and 45.6 ± 10.9 years. The prevalence of high blood pressure was 34.9% with a distribution of teaching to non-teaching rate of 20.1% and 14.8% respectively. There were significant correlations between blood pressure and each of weight, body mass index and waist circumference in both groups (p < 0.05). Conclusion: Prevalence of high blood pressure was higher among teaching than non-teaching staff and significant correlations were found between blood pressure and some anthropometric parameters. Public health including regular physical activity enlightenment programmes to reduce blood pressure is recommended.展开更多
In the present paper, based on Lobachevskian (hyperbolic) static geometry, we present (as an alternative to the existing Big Bang model of CMB) a geometric model of CMB in a Lobachevskian static universe as a homogene...In the present paper, based on Lobachevskian (hyperbolic) static geometry, we present (as an alternative to the existing Big Bang model of CMB) a geometric model of CMB in a Lobachevskian static universe as a homogeneous space of horospheres. It is shown that from the point of view of physics, a horosphere is an electromagnetic wavefront in Lobachevskian space. The presented model of CMB is an Lorentz invariant object, possesses observable properties of isotropy and homogeneity for all observers scattered across the Lobachevskian universe, and has a black body spectrum. The Lorentz invariance of CMB implies a mathematical equation for cosmological redshift for all z. The global picture of CMB, described solely in terms of the Lorentz group—SL(2C), is an infinite union of double sided quotient spaces (double fibration of the Lorentz group) taken over all parabolic stabilizers P⊂SL(2C). The local picture of CMB (as seen by us from Earth) is a Grassmannian space of an infinite union all horospheres containing origin o∈L3, equivalent to a projective plane RP2. The space of electromagnetic wavefronts has a natural identification with the boundary at infinity (an absolute) of Lobachevskian universe. In this way, it is possible to regard the CMB as a reference at infinity (an absolute reference) and consequently to define an absolute motion and absolute rest with respect to CMB, viewed as an infinitely remote reference.展开更多
A theory of gravitation in flat space-time is applied to homogeneous, isotropic cosmological models. There are non-singular cosmological models. A natural interpretation is a non-expanding universe. The redshift is an...A theory of gravitation in flat space-time is applied to homogeneous, isotropic cosmological models. There are non-singular cosmological models. A natural interpretation is a non-expanding universe. The redshift is an intrinsic effect and not a Doppler effect. The universe contains only energy in the beginning, i.e. no matter exists. In the course of time matter and radiation are created from energy where the whole energy is conserved. Matter increases with time but a certain time after the beginning of the universe the creation of matter is finished and the universe appears like a static one. A modified Hubble law is considered which may explain the high redshifts of objects in the universe without the assumption of dark energy.展开更多
Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. ...Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements.展开更多
We begin by examining a general expression of entropy, and its links to a minimum radius of the universe. We derive an expression for the production of at least 1 unit of entropy, which translates to a value of Planck...We begin by examining a general expression of entropy, and its links to a minimum radius of the universe. We derive an expression for the production of at least 1 unit of entropy, which translates to a value of Planck length in radii to 1000 times Planck radii, for the quantum bubble of space-time which depends upon, of all things, the initial Hubble expansion rate value. If the Hubble parameter has the value of 10^19 GeV, we see a minimum radial length of the Universe of about 1 billion times Planck length. If the Hubble parameter is of 10^19 GeV, the minimum radial length of the universe would be about one Planck length, which is surprising to put it mildly. The higher the initial temperate is, up to a point, the more likely the initial entropy is closer to the Causal barrier mentioned in an earlier publication by the author.展开更多
In this work, we present our theory and principles of the mathematical foundations of Lobachevskian (hyperbolic) astrophysics and cosmology which follow from a mathematical interpretation of experimental data in a Lob...In this work, we present our theory and principles of the mathematical foundations of Lobachevskian (hyperbolic) astrophysics and cosmology which follow from a mathematical interpretation of experimental data in a Lobachevskian non-expanding Universe. Several new scientific formulas of practical significance for astrophysics, astronomy, and cosmology are presented. A new method of calculating (from experimental data) the curvature of a Lobachevskian Universe is given, resulting in an estimated curvature-K on the order of 10−52 m−2. Our model also estimates the radius of the non-expanding Lobachevskian Universe in a Poincare ball model as approximately 14.9 bly. A rigorous theoretical explanation in terms of the fixed Lobachevskian geometry of a non-expanding Universe is provided for experimental data acquired in the Supernova Project, showing an excellent agreement between experimental data and our theoretical formulas. We present new geometric equations relating brightness dimming and redshift, and employ them to fully explain the erroneous reasoning and erroneous conclusions of Perlmutter, Schmidt, Riess and the 2011 Nobel Prize Committee regarding “accelerated expansion” of the Universe. We demonstrate that experimental data acquired in deep space astrophysics when interpreted in terms of Euclidean geometry will result in illusions of space expansion: an illusion of “linear space expansion”—Hubble, and an illusion of “accelerated (non-linear) space expansion”—Perlmutter, Schmidt, Riess.展开更多
Gravitation in flat space-time is described as field and studied in several articles. In addition to the flat space-time metric a quadratic form formally similar to that of general relativity defines the proper-time. ...Gravitation in flat space-time is described as field and studied in several articles. In addition to the flat space-time metric a quadratic form formally similar to that of general relativity defines the proper-time. The field equations for the gravitational field are non-linear differential equations of second order in divergence form and have as source the total energy-momentum tensor (inclusive that of gravitation). The total energy-momentum is conserved. It implies the equations of motion for matter in this field. The application of the theory gives for weak fields to measurable accuracy the same results as general relativity. The results of cosmological models are quite different from those of general relativity. The beginning of the universe starts from uniformly distributed gravitational energy without matter and radiation which is generated in the course of time. The solution is given in the pseudo-Euclidean metric, i.e. space is flat and non-expanding. There are non-singular solutions, i.e. no big bang. The redshift is a gravitational effect and not a Doppler effect. Gravitation is explained as field with attractive property and the condensed gravitational field converts to matter, radiation, etc. in the universe whereas the total energy is conserved. There is no contraction and no expansion of the universe.展开更多
文摘Motivation is an important factor to English learning,it plays an important role.In this thesis,the instrument used in the study is a questionnaire,and this thesis was conducted on December 5th,2016 at Ningbo Dahongying University involving 182 students.Based on the questionnaire investigation,this thesis discusses the learning motivation of English major juniors and seniors in Ningbo Dahongying University from the motivation types,factors and strategies.
文摘Objective: Differences in jobs descriptions and responsibilities may contribute to varying degree of exposure to diseases including high blood pressure. There is dearth of studies comparing blood pressure patterns and anthropometric parameters between teaching and non-teaching staff of university. Therefore, this study was designed to assess and compare the blood pressure and the anthropometric parameters of both teaching and non-teaching staff of a Nigerian university. Materials and Methods: A cross-sectional study was conducted to assess blood pressure pattern and anthropometric parameters among 324 apparently healthy teaching (n = 120) and non-teaching (n = 202) staff of Obafemi Awolowo University, Ile-Ife, Nigeria. Anthropometric parameters including height, weight and hip and waist circumferences were measured. Blood pressure was measured thrice during office hours (9.00 - 11.00 hours) using standard procedures and hypertension was defined as ≥140 ≥90 mmHg. Descriptive and inferential statistics were used to analyze the data at p < 0.05 alpha level. Results: The mean of ages of teaching and non-teaching staff were 46.8 ± 9.8 and 45.6 ± 10.9 years. The prevalence of high blood pressure was 34.9% with a distribution of teaching to non-teaching rate of 20.1% and 14.8% respectively. There were significant correlations between blood pressure and each of weight, body mass index and waist circumference in both groups (p < 0.05). Conclusion: Prevalence of high blood pressure was higher among teaching than non-teaching staff and significant correlations were found between blood pressure and some anthropometric parameters. Public health including regular physical activity enlightenment programmes to reduce blood pressure is recommended.
文摘In the present paper, based on Lobachevskian (hyperbolic) static geometry, we present (as an alternative to the existing Big Bang model of CMB) a geometric model of CMB in a Lobachevskian static universe as a homogeneous space of horospheres. It is shown that from the point of view of physics, a horosphere is an electromagnetic wavefront in Lobachevskian space. The presented model of CMB is an Lorentz invariant object, possesses observable properties of isotropy and homogeneity for all observers scattered across the Lobachevskian universe, and has a black body spectrum. The Lorentz invariance of CMB implies a mathematical equation for cosmological redshift for all z. The global picture of CMB, described solely in terms of the Lorentz group—SL(2C), is an infinite union of double sided quotient spaces (double fibration of the Lorentz group) taken over all parabolic stabilizers P⊂SL(2C). The local picture of CMB (as seen by us from Earth) is a Grassmannian space of an infinite union all horospheres containing origin o∈L3, equivalent to a projective plane RP2. The space of electromagnetic wavefronts has a natural identification with the boundary at infinity (an absolute) of Lobachevskian universe. In this way, it is possible to regard the CMB as a reference at infinity (an absolute reference) and consequently to define an absolute motion and absolute rest with respect to CMB, viewed as an infinitely remote reference.
文摘A theory of gravitation in flat space-time is applied to homogeneous, isotropic cosmological models. There are non-singular cosmological models. A natural interpretation is a non-expanding universe. The redshift is an intrinsic effect and not a Doppler effect. The universe contains only energy in the beginning, i.e. no matter exists. In the course of time matter and radiation are created from energy where the whole energy is conserved. Matter increases with time but a certain time after the beginning of the universe the creation of matter is finished and the universe appears like a static one. A modified Hubble law is considered which may explain the high redshifts of objects in the universe without the assumption of dark energy.
文摘Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements.
文摘We begin by examining a general expression of entropy, and its links to a minimum radius of the universe. We derive an expression for the production of at least 1 unit of entropy, which translates to a value of Planck length in radii to 1000 times Planck radii, for the quantum bubble of space-time which depends upon, of all things, the initial Hubble expansion rate value. If the Hubble parameter has the value of 10^19 GeV, we see a minimum radial length of the Universe of about 1 billion times Planck length. If the Hubble parameter is of 10^19 GeV, the minimum radial length of the universe would be about one Planck length, which is surprising to put it mildly. The higher the initial temperate is, up to a point, the more likely the initial entropy is closer to the Causal barrier mentioned in an earlier publication by the author.
文摘In this work, we present our theory and principles of the mathematical foundations of Lobachevskian (hyperbolic) astrophysics and cosmology which follow from a mathematical interpretation of experimental data in a Lobachevskian non-expanding Universe. Several new scientific formulas of practical significance for astrophysics, astronomy, and cosmology are presented. A new method of calculating (from experimental data) the curvature of a Lobachevskian Universe is given, resulting in an estimated curvature-K on the order of 10−52 m−2. Our model also estimates the radius of the non-expanding Lobachevskian Universe in a Poincare ball model as approximately 14.9 bly. A rigorous theoretical explanation in terms of the fixed Lobachevskian geometry of a non-expanding Universe is provided for experimental data acquired in the Supernova Project, showing an excellent agreement between experimental data and our theoretical formulas. We present new geometric equations relating brightness dimming and redshift, and employ them to fully explain the erroneous reasoning and erroneous conclusions of Perlmutter, Schmidt, Riess and the 2011 Nobel Prize Committee regarding “accelerated expansion” of the Universe. We demonstrate that experimental data acquired in deep space astrophysics when interpreted in terms of Euclidean geometry will result in illusions of space expansion: an illusion of “linear space expansion”—Hubble, and an illusion of “accelerated (non-linear) space expansion”—Perlmutter, Schmidt, Riess.
文摘Gravitation in flat space-time is described as field and studied in several articles. In addition to the flat space-time metric a quadratic form formally similar to that of general relativity defines the proper-time. The field equations for the gravitational field are non-linear differential equations of second order in divergence form and have as source the total energy-momentum tensor (inclusive that of gravitation). The total energy-momentum is conserved. It implies the equations of motion for matter in this field. The application of the theory gives for weak fields to measurable accuracy the same results as general relativity. The results of cosmological models are quite different from those of general relativity. The beginning of the universe starts from uniformly distributed gravitational energy without matter and radiation which is generated in the course of time. The solution is given in the pseudo-Euclidean metric, i.e. space is flat and non-expanding. There are non-singular solutions, i.e. no big bang. The redshift is a gravitational effect and not a Doppler effect. Gravitation is explained as field with attractive property and the condensed gravitational field converts to matter, radiation, etc. in the universe whereas the total energy is conserved. There is no contraction and no expansion of the universe.