期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A NOTE ON PERTURBATION OF NON-SYMMETRIC DIRICHLET FORMS BY SIGNED SMOOTH MEASURES 被引量:3
1
作者 陈传钟 《Acta Mathematica Scientia》 SCIE CSCD 2007年第1期219-224,共6页
This article discusses the perturbation of a non-symmetric Dirichlet form, (ε, D(ε)), by a signed smooth measure u, where u=u1 -u2 with u1 and u2 being smooth measures. It gives a sufficient condition for the pe... This article discusses the perturbation of a non-symmetric Dirichlet form, (ε, D(ε)), by a signed smooth measure u, where u=u1 -u2 with u1 and u2 being smooth measures. It gives a sufficient condition for the perturbed form (ε^u ,D(ε^u)) (for some a0 ≥ 0) to be a coercive closed form. 展开更多
关键词 non-symmetric dirichlet form signed smooth measure perturbation of dirichlet form generalized Feynman-Kac semigroup
下载PDF
On notions of harmonicity for non-symmetric Dirichlet form
2
作者 MA ZhiMing1, ZHU RongChan1, & ZHU XiangChan2 1Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China 2School of Mathematical Sciences, Peking University, Beijing 100871, China 《Science China Mathematics》 SCIE 2010年第6期1407-1420,共14页
In this paper, we extend the equivalence of the analytic and probabilistic notions of harmonicity in the context of Hunt processes associated with non-symmetric Dirichlet forms on locally compact separable metric spac... In this paper, we extend the equivalence of the analytic and probabilistic notions of harmonicity in the context of Hunt processes associated with non-symmetric Dirichlet forms on locally compact separable metric spaces. Extensions to the processes associated with semi-Dirichlet forms and nearly symmetric right processes on Lusin spaces including infinite dimensional spaces are mentioned at the end of this paper. 展开更多
关键词 harmonic functions UNIformLY INTEGRABLE MARTINGALE SPV INTEGRABLE non-symmetric dirichlet forms non-symmetric Beurling-Deny decomposition HUNT processes
原文传递
时间变换下具有有限二阶矩跳跃核的非局部狄氏型的紧性
3
作者 张龙腾 陈瑾 《应用概率统计》 CSCD 北大核心 2022年第4期563-580,共18页
本文给出了时间变换下,具有有限二阶矩跳跃核的非局部狄氏型对应马氏半群紧性的充分必要判别条件.
关键词 紧性 非局部狄氏型 时间变换 超庞加莱不等式
下载PDF
狄氏型及其在数学物理中的应用 被引量:1
4
作者 马志明 《数学进展》 CSCD 北大核心 1993年第1期46-68,共23页
简介狄氏型理论。该理论已成为紧密联系解析位势论与马氏过程理论的强有力数学工具,并因此在数学与物理中有许多应用。
关键词 狄利克雷型 数学 物理 马氏过程
下载PDF
狄氏空间上的有界线性映射
5
作者 王玮 马丽 韩新方 《海南师范大学学报(自然科学版)》 CAS 2014年第4期363-364,共2页
建立了非对称狄氏型狄氏空间到其对称型狄氏空间上的一种映射,证明了该映射及其拟映射都是有界的线性映射,并且给出了在此映射下狄氏空间中元素对应关系和表达式.
关键词 对称狄氏型 非对称狄氏型 对应关系 映射 有界线性映射
下载PDF
关于一类非对称Lévy过程可乘泛函的一个注记
6
作者 潘爽 杨晓玲 《海南师范大学学报(自然科学版)》 CAS 2009年第2期129-132,共4页
讨论由非对称Lévy过程和它联系的狄氏型定义域中的一个函数产生的可乘泛函,得到了该可乘泛函是正的上鞅的充分条件.
关键词 非对称狄氏型 Fukushima分解 非对称过程 零能量可加泛函 鞅可加泛函 E-网
下载PDF
非对称Markov过程的Girsanov变换
7
作者 陈传钟 马丽 杨赛赛 《中国科学:数学》 CSCD 北大核心 2017年第5期611-624,共14页
本文研究非对称Markov过程X由可乘泛函诱导的变换,该可乘泛函是过程X的二次变差为零的连续可加泛函的指数形式.本文通过变换后过程联系的二次型刻画了变换后过程的半群.设(X,X)为非对称Dirichlet型联系的一对对偶Markov过程,本文给出X和... 本文研究非对称Markov过程X由可乘泛函诱导的变换,该可乘泛函是过程X的二次变差为零的连续可加泛函的指数形式.本文通过变换后过程联系的二次型刻画了变换后过程的半群.设(X,X)为非对称Dirichlet型联系的一对对偶Markov过程,本文给出X和X经Girsanov变换后的过程关于另外一个参考测度对偶的充分必要条件. 展开更多
关键词 MARKOV过程 非对称dirichlet GIRSANOV变换
原文传递
Scaling limits of interacting diffusions in domains
8
作者 Zhen-Qing CHEN Wai-Tong (Louis) FAN 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第4期717-736,共20页
We survey recent effort in establishing the hydrodynamic limits and the fluctuation limits for a class of interacting diffusions in domains. These systems are introduced to model the transport of positive and negative... We survey recent effort in establishing the hydrodynamic limits and the fluctuation limits for a class of interacting diffusions in domains. These systems are introduced to model the transport of positive and negative charges in solar cells. They are general microscopic models that can be used to describe macroscopic phenomena with coupled boundary conditions, such as the popula- tion dynamics of two segregated species under competition. Proving these two types of limits represents establishing the functional law of large numbers and the functional central limit theorem, respectively, for the empirical measures of the spatial positions of the particles. We show that the hydrodynamic limit is a pair of deterministic measures whose densities solve a coupled nonlinear heat equations, while the fluctuation limit can be described by a Gaussian Markov process that solves a stochastic partial differential equation. 展开更多
关键词 Hydrodynamic limit fluctuation interacting diffusion reflecteddiffusion dirichlet form non-linear boundary condition coupled partiMdifferential equation MARTINGALES stochastic partial differential equation Guassian process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部