This article discusses the perturbation of a non-symmetric Dirichlet form, (ε, D(ε)), by a signed smooth measure u, where u=u1 -u2 with u1 and u2 being smooth measures. It gives a sufficient condition for the pe...This article discusses the perturbation of a non-symmetric Dirichlet form, (ε, D(ε)), by a signed smooth measure u, where u=u1 -u2 with u1 and u2 being smooth measures. It gives a sufficient condition for the perturbed form (ε^u ,D(ε^u)) (for some a0 ≥ 0) to be a coercive closed form.展开更多
In this paper, we extend the equivalence of the analytic and probabilistic notions of harmonicity in the context of Hunt processes associated with non-symmetric Dirichlet forms on locally compact separable metric spac...In this paper, we extend the equivalence of the analytic and probabilistic notions of harmonicity in the context of Hunt processes associated with non-symmetric Dirichlet forms on locally compact separable metric spaces. Extensions to the processes associated with semi-Dirichlet forms and nearly symmetric right processes on Lusin spaces including infinite dimensional spaces are mentioned at the end of this paper.展开更多
We survey recent effort in establishing the hydrodynamic limits and the fluctuation limits for a class of interacting diffusions in domains. These systems are introduced to model the transport of positive and negative...We survey recent effort in establishing the hydrodynamic limits and the fluctuation limits for a class of interacting diffusions in domains. These systems are introduced to model the transport of positive and negative charges in solar cells. They are general microscopic models that can be used to describe macroscopic phenomena with coupled boundary conditions, such as the popula- tion dynamics of two segregated species under competition. Proving these two types of limits represents establishing the functional law of large numbers and the functional central limit theorem, respectively, for the empirical measures of the spatial positions of the particles. We show that the hydrodynamic limit is a pair of deterministic measures whose densities solve a coupled nonlinear heat equations, while the fluctuation limit can be described by a Gaussian Markov process that solves a stochastic partial differential equation.展开更多
基金This research is supported by the NSFC andNSF of Hainan Province (Nos. 80529 and 10001)
文摘This article discusses the perturbation of a non-symmetric Dirichlet form, (ε, D(ε)), by a signed smooth measure u, where u=u1 -u2 with u1 and u2 being smooth measures. It gives a sufficient condition for the perturbed form (ε^u ,D(ε^u)) (for some a0 ≥ 0) to be a coercive closed form.
基金supported by National Natural Science Foundation of China (Grant No.10721101)National Basic Research Program of China (Grant No.2006CB805900)+1 种基金Key Lab of Random Complex Structures and Data Science,Chinese Academy of Sciences (Grant No.2008DP173182)Sino-Germany IGK Project
文摘In this paper, we extend the equivalence of the analytic and probabilistic notions of harmonicity in the context of Hunt processes associated with non-symmetric Dirichlet forms on locally compact separable metric spaces. Extensions to the processes associated with semi-Dirichlet forms and nearly symmetric right processes on Lusin spaces including infinite dimensional spaces are mentioned at the end of this paper.
基金supported by the National Natural Science Foundation of China(Grant No.12071076)the Program for Education and Scientific Research Project of Young and Middle-Aged Teachers in Fujian Province(Grant Nos.JAT191128,JT180818).
文摘We survey recent effort in establishing the hydrodynamic limits and the fluctuation limits for a class of interacting diffusions in domains. These systems are introduced to model the transport of positive and negative charges in solar cells. They are general microscopic models that can be used to describe macroscopic phenomena with coupled boundary conditions, such as the popula- tion dynamics of two segregated species under competition. Proving these two types of limits represents establishing the functional law of large numbers and the functional central limit theorem, respectively, for the empirical measures of the spatial positions of the particles. We show that the hydrodynamic limit is a pair of deterministic measures whose densities solve a coupled nonlinear heat equations, while the fluctuation limit can be described by a Gaussian Markov process that solves a stochastic partial differential equation.