Any computer system with known vulnerabilities can be presented using attack graphs. An attacker generally has a mission to reach a goal state that he expects to achieve. Expected Path Length (EPL) [1] in the context ...Any computer system with known vulnerabilities can be presented using attack graphs. An attacker generally has a mission to reach a goal state that he expects to achieve. Expected Path Length (EPL) [1] in the context of an attack graph describes the length or number of steps that the attacker has to take in achieving the goal state. However, EPL varies and it is based on the “state of vulnerabilities” [2] [3] in a given computer system. Any vulnerability throughout its life cycle passes through several stages that we identify as “states of the vulnerability life cycle” [2] [3]. In our previous studies we have developed mathematical models using Markovian theory to estimate the probability of a given vulnerability being in a particular state of its life cycle. There, we have considered a typical model of a computer network system with two computers subject to three vulnerabilities, and developed a method driven by an algorithm to estimate the EPL of this network system as a function of time. This approach is important because it allows us to monitor a computer system during the process of being exploited. Proposed non-homogeneous model in this study estimates the behavior of the EPL as a function of time and therefore act as an index of the risk associated with the network system getting exploited.展开更多
Security measures for a computer network system can be enhanced with better understanding the vulnerabilities and their behavior over the time. It is observed that the effects of vulnerabilities vary with the time ove...Security measures for a computer network system can be enhanced with better understanding the vulnerabilities and their behavior over the time. It is observed that the effects of vulnerabilities vary with the time over their life cycle. In the present study, we have presented a new methodology to assess the magnitude of the risk of a vulnerability as a “Risk Rank”. To derive this new methodology well known Markovian approach with a transition probability matrix is used including relevant risk factors for discovered and recorded vulnerabilities. However, in addition to observing the risk factor for each vulnerability individually we have introduced the concept of ranking vulnerabilities at a particular time taking a similar approach to Google Page Rank Algorithm. New methodology is exemplified using a simple model of computer network with three recorded vulnerabilities with their CVSS scores.展开更多
In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, inc...In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, including response cost and response negative cost. The whole assessment process is considered as a differential game for optimal resource control. The proposed scheme can be obtained through the Nash Equilibrium. It is proved that the game theory based algorithm is applicable and the optimal resource level can be achieved based on the proposed algorithm.展开更多
In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cry...In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cryptographic system in managing token, but it doesn't utilize any cryptographic primitives on the routing messages. In PNCSR, each node is fair. Local neighboring nodes collaboratively monitor each other and sustain each other. It also uses a novel credit strategy which additively increases the token lifetime each time a node renews its token. We also analyze the storage, computation, and communication overhead of PNCSR, and provide a simple yet meaningful overhead comparison. Finally, the simulation results show the effectiveness of PNCSR in various situations.展开更多
This paper proposes a quantitative security evaluation for software system from the vulnerability data consisting of discovery date, solution date and exploit publish date based on a stochastic model. More precisely, ...This paper proposes a quantitative security evaluation for software system from the vulnerability data consisting of discovery date, solution date and exploit publish date based on a stochastic model. More precisely, our model considers a vulnerability life-cycle model and represents the vulnerability discovery process as a non-homogeneous Poisson process. In a numerical example, we show the quantitative measures for contents management system of an open source project.展开更多
The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the afore...The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the aforementioned factors while enhancing the performance of fading channels. Due to these issues, a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is taken into consideration in this study. So the investigation of a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is the focus of this paper. The primary goals of this study are to maximize security in wireless multicasting while minimizing security loss caused by the effects of relays, branches at destinations and wiretappers, as well as multicast users and wiretappers through opportunistic relaying. To comprehend the insight effects of prior parameters, the closed form analytical expressions are constructed for the probability of non-zero secrecy multicast capacity (PNSMC), ergodic secrecy multicast capacity (ESMC), and secure outage probability for multicasting (SOPM). The findings demonstrate that opportunistic relaying is a successful method for reducing the loss of security in multicasting.展开更多
With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the syst...With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the system, which have been widely concerned in the field of wireless communication. However, due to the importance of ownership and privacy protection, the IoT system must provide corresponding security mechanisms. From the perspective of improving the transmission security of CR-NOMA system based on cognitive wireless network, and considering the shortcomings of traditional relay cooperative NOMA system, this paper mainly analyzes the eavesdropping channel model of multi-user CR-NOMA system and derives the expressions of system security and rate to improve the security performance of CR-NOMA system. The basic idea of DC planning algorithm and the scheme of sub-carrier power allocation to improve the transmission security of the system were introduced. An algorithm for DC-CR-NOMA was proposed to maximize the SSR of the system and minimize the energy loss. The simulation results show that under the same complexity, the security and speed of the system can be greatly improved compared with the traditional scheme.展开更多
The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to i...The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to improve the performance of fading channels reducing the effects of aforementioned parameters. Motivated by these issues, in this paper, a secure wireless multicasting scenario through κ-μ shadowed fading channel is considered in the presence of multiple eavesdroppers with opportunistic relaying. The main purpose of this paper is to ensure the security level in wireless multicasting compensating the loss of security due to the effects of power ratio between dominant and scattered waves, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers, by opportunistic relaying technique. The closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to understand the insight of the effects of above parameters. The results show that the loss of security in multicasting through κ-μ shadowed fading channel can be significantly enhanced using opportunistic relaying technique by compensating the effects of scatterers, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers.展开更多
The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by th...The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by these advantages of OSFBC-OFDM system, this paper considers a secure wireless multicasting scenario through multiple-input multiple-output (MIMO) OFDM system employing OSFBC over frequency selective α-μ fading channels. The authors are interested to protect the desired signals from eavesdropping considering the impact of the number of multicast users and eavesdroppers, and the fading parameters α and μ. A mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multi-casting (SOPM) to ensure the security in the presence of multiple eaves-droppers. The results show that the security in MIMO OSFBC OFDM system over α-μ fading is more sensitive to the magnitude of α and μ and this effect increases in the high signal-to-noise ratio (SNR) region of the main channel.展开更多
The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the t...The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the topic of canceling simultaneous effect of interference and correlation until recently. This paper considers a secure wireless multicasting scenario through multicellular networks over spatially correlated Nakagami-<i>m</i> fading channel in the presence of multiple eavesdroppers. Authors are interested to protect the desired signals from eavesdropping considering the impact of perfect channel estimation (PCE) with interference and correlation. The protection of eavesdropping is also made strong reducing the simultaneous impact of interference and correlation on the secrecy multicast capacity employing opportunistic relaying technique. In terms of the signal-to-interference plus noise ratio (SINR), fading parameter, correlation coefficient, the number of multicast users and eavesdroppers and the number of antennas at the multicast users and eavesdroppers, the closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting to understand the insight of the effects of aforementioned parameters. The results show that the simultaneous effects of correlation and interference at the multicast users degrade security in multicasting. Moreover, the security in multicasting degrades with the intensity of fading and the number of multicast users, eavesdroppers and antennas at the eavesdroppers. The effects of these parameters on the security in multicasting can be significantly reduced by using opportunistic relaying technique with PCE. Finally, the analytical results are verified via Monte-Carlo simulation to justify the validity of derived closed-form analytical expressions.展开更多
The effect of correlated fading reduces the performance gain in multi-antenna communications. Diversity combining is a well-known technique to reduce the effect of correlation. But still, it is an open problem to quan...The effect of correlated fading reduces the performance gain in multi-antenna communications. Diversity combining is a well-known technique to reduce the effect of correlation. But still, it is an open problem to quantify as the diversity scheme is more efficient in enhancing the security of cellular multicast network mitigating the effects of correlation. Motivated by this issue, this paper considers a secure wireless multicasting scenario through correlated cellular networks in the presence of multiple eavesdroppers. The selection combining (SC) and switch and stay combining (SSC) techniques are considered in dual arbitrarily correlated Nakagami-m fading channels. The closed-form analytical expressions for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting are derived to understand the insight into the effects of correlation on the SC and SSC diversity schemes and to quantify which diversity scheme is more efficient in enhancing the security of correlated multicast networks. The results show that, although the diversity gain reduces the effect of correlation, the diversity gain provided by the SC diversity scheme is more significant in mitigating the effect of correlation compared to the SSC diversity scheme. Due to the selection mechanism of SC diversity, it is more sensitive to the change of SNR of the eavesdropper’s channel compared to the case of the SSC diversity scheme.展开更多
In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-...In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.展开更多
Yoon and Yoo recently proposed a robust authenticated encryption scheme and claimed their scheme has the properties of forward secrecy and confidentiality. The current paper, however, points out that Yoon-Yoo's schem...Yoon and Yoo recently proposed a robust authenticated encryption scheme and claimed their scheme has the properties of forward secrecy and confidentiality. The current paper, however, points out that Yoon-Yoo's scheme also can not provide forward secrecy and confidentiality such that any adversary can easily recover the transferred message. Based on intractability of reversing the one-way hash function and discrete logarithm problem, an improved authenticated encryption scheme with messages linkage is proposed. The above security faults get solved perfectly. The new scheme is proven to satisfy all the basic security requirements of the authenticated encryption scheme. And by the concrete comparison, it has the similar efficiency of the original scheme.展开更多
A multilevel secure relation hierarchical data model for multilevel secure database is extended from the relation hierarchical data model in single level environment in this paper. Based on the model, an upper lowe...A multilevel secure relation hierarchical data model for multilevel secure database is extended from the relation hierarchical data model in single level environment in this paper. Based on the model, an upper lower layer relationalintegrity is presented after we analyze and eliminate the covert channels caused by the database integrity.Two SQL statements are extended to process polyinstantiation in the multilevel secure environment.The system based on the multilevel secure relation hierarchical data model is capable of integratively storing and manipulating complicated objects ( e.g. , multilevel spatial data) and conventional data ( e.g. , integer, real number and character string) in multilevel secure database.展开更多
This paper proposes a security policy model for mandatory access control in class B1 database management system whose level of labeling is tuple. The relation hierarchical data model is extended to multilevel relatio...This paper proposes a security policy model for mandatory access control in class B1 database management system whose level of labeling is tuple. The relation hierarchical data model is extended to multilevel relation hierarchical data model. Based on the multilevel relation hierarchical data model, the concept of upper lower layer relational integrity is presented after we analyze and eliminate the covert channels caused by the database integrity. Two SQL statements are extended to process polyinstantiation in the multilevel secure environment. The system is based on the multilevel relation hierarchical data model and is capable of integratively storing and manipulating multilevel complicated objects ( e.g., multilevel spatial data) and multilevel conventional data ( e.g., integer, real number and character string).展开更多
文摘Any computer system with known vulnerabilities can be presented using attack graphs. An attacker generally has a mission to reach a goal state that he expects to achieve. Expected Path Length (EPL) [1] in the context of an attack graph describes the length or number of steps that the attacker has to take in achieving the goal state. However, EPL varies and it is based on the “state of vulnerabilities” [2] [3] in a given computer system. Any vulnerability throughout its life cycle passes through several stages that we identify as “states of the vulnerability life cycle” [2] [3]. In our previous studies we have developed mathematical models using Markovian theory to estimate the probability of a given vulnerability being in a particular state of its life cycle. There, we have considered a typical model of a computer network system with two computers subject to three vulnerabilities, and developed a method driven by an algorithm to estimate the EPL of this network system as a function of time. This approach is important because it allows us to monitor a computer system during the process of being exploited. Proposed non-homogeneous model in this study estimates the behavior of the EPL as a function of time and therefore act as an index of the risk associated with the network system getting exploited.
文摘Security measures for a computer network system can be enhanced with better understanding the vulnerabilities and their behavior over the time. It is observed that the effects of vulnerabilities vary with the time over their life cycle. In the present study, we have presented a new methodology to assess the magnitude of the risk of a vulnerability as a “Risk Rank”. To derive this new methodology well known Markovian approach with a transition probability matrix is used including relevant risk factors for discovered and recorded vulnerabilities. However, in addition to observing the risk factor for each vulnerability individually we have introduced the concept of ranking vulnerabilities at a particular time taking a similar approach to Google Page Rank Algorithm. New methodology is exemplified using a simple model of computer network with three recorded vulnerabilities with their CVSS scores.
基金supported by the China Postdoctoral Science Foundation(No.2015M570936)National Science Foundation Project of P.R.China(No.61501026,61272506)Fundamental Research Funds for the Central Universities(No.FRF-TP-15032A1)
文摘In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, including response cost and response negative cost. The whole assessment process is considered as a differential game for optimal resource control. The proposed scheme can be obtained through the Nash Equilibrium. It is proved that the game theory based algorithm is applicable and the optimal resource level can be achieved based on the proposed algorithm.
基金Supported bythe National Natural Science Foundationof China (60403027)
文摘In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cryptographic system in managing token, but it doesn't utilize any cryptographic primitives on the routing messages. In PNCSR, each node is fair. Local neighboring nodes collaboratively monitor each other and sustain each other. It also uses a novel credit strategy which additively increases the token lifetime each time a node renews its token. We also analyze the storage, computation, and communication overhead of PNCSR, and provide a simple yet meaningful overhead comparison. Finally, the simulation results show the effectiveness of PNCSR in various situations.
文摘This paper proposes a quantitative security evaluation for software system from the vulnerability data consisting of discovery date, solution date and exploit publish date based on a stochastic model. More precisely, our model considers a vulnerability life-cycle model and represents the vulnerability discovery process as a non-homogeneous Poisson process. In a numerical example, we show the quantitative measures for contents management system of an open source project.
文摘The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the aforementioned factors while enhancing the performance of fading channels. Due to these issues, a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is taken into consideration in this study. So the investigation of a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is the focus of this paper. The primary goals of this study are to maximize security in wireless multicasting while minimizing security loss caused by the effects of relays, branches at destinations and wiretappers, as well as multicast users and wiretappers through opportunistic relaying. To comprehend the insight effects of prior parameters, the closed form analytical expressions are constructed for the probability of non-zero secrecy multicast capacity (PNSMC), ergodic secrecy multicast capacity (ESMC), and secure outage probability for multicasting (SOPM). The findings demonstrate that opportunistic relaying is a successful method for reducing the loss of security in multicasting.
文摘With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the system, which have been widely concerned in the field of wireless communication. However, due to the importance of ownership and privacy protection, the IoT system must provide corresponding security mechanisms. From the perspective of improving the transmission security of CR-NOMA system based on cognitive wireless network, and considering the shortcomings of traditional relay cooperative NOMA system, this paper mainly analyzes the eavesdropping channel model of multi-user CR-NOMA system and derives the expressions of system security and rate to improve the security performance of CR-NOMA system. The basic idea of DC planning algorithm and the scheme of sub-carrier power allocation to improve the transmission security of the system were introduced. An algorithm for DC-CR-NOMA was proposed to maximize the SSR of the system and minimize the energy loss. The simulation results show that under the same complexity, the security and speed of the system can be greatly improved compared with the traditional scheme.
文摘The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to improve the performance of fading channels reducing the effects of aforementioned parameters. Motivated by these issues, in this paper, a secure wireless multicasting scenario through κ-μ shadowed fading channel is considered in the presence of multiple eavesdroppers with opportunistic relaying. The main purpose of this paper is to ensure the security level in wireless multicasting compensating the loss of security due to the effects of power ratio between dominant and scattered waves, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers, by opportunistic relaying technique. The closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to understand the insight of the effects of above parameters. The results show that the loss of security in multicasting through κ-μ shadowed fading channel can be significantly enhanced using opportunistic relaying technique by compensating the effects of scatterers, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers.
文摘The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by these advantages of OSFBC-OFDM system, this paper considers a secure wireless multicasting scenario through multiple-input multiple-output (MIMO) OFDM system employing OSFBC over frequency selective α-μ fading channels. The authors are interested to protect the desired signals from eavesdropping considering the impact of the number of multicast users and eavesdroppers, and the fading parameters α and μ. A mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multi-casting (SOPM) to ensure the security in the presence of multiple eaves-droppers. The results show that the security in MIMO OSFBC OFDM system over α-μ fading is more sensitive to the magnitude of α and μ and this effect increases in the high signal-to-noise ratio (SNR) region of the main channel.
文摘The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the topic of canceling simultaneous effect of interference and correlation until recently. This paper considers a secure wireless multicasting scenario through multicellular networks over spatially correlated Nakagami-<i>m</i> fading channel in the presence of multiple eavesdroppers. Authors are interested to protect the desired signals from eavesdropping considering the impact of perfect channel estimation (PCE) with interference and correlation. The protection of eavesdropping is also made strong reducing the simultaneous impact of interference and correlation on the secrecy multicast capacity employing opportunistic relaying technique. In terms of the signal-to-interference plus noise ratio (SINR), fading parameter, correlation coefficient, the number of multicast users and eavesdroppers and the number of antennas at the multicast users and eavesdroppers, the closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting to understand the insight of the effects of aforementioned parameters. The results show that the simultaneous effects of correlation and interference at the multicast users degrade security in multicasting. Moreover, the security in multicasting degrades with the intensity of fading and the number of multicast users, eavesdroppers and antennas at the eavesdroppers. The effects of these parameters on the security in multicasting can be significantly reduced by using opportunistic relaying technique with PCE. Finally, the analytical results are verified via Monte-Carlo simulation to justify the validity of derived closed-form analytical expressions.
文摘The effect of correlated fading reduces the performance gain in multi-antenna communications. Diversity combining is a well-known technique to reduce the effect of correlation. But still, it is an open problem to quantify as the diversity scheme is more efficient in enhancing the security of cellular multicast network mitigating the effects of correlation. Motivated by this issue, this paper considers a secure wireless multicasting scenario through correlated cellular networks in the presence of multiple eavesdroppers. The selection combining (SC) and switch and stay combining (SSC) techniques are considered in dual arbitrarily correlated Nakagami-m fading channels. The closed-form analytical expressions for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting are derived to understand the insight into the effects of correlation on the SC and SSC diversity schemes and to quantify which diversity scheme is more efficient in enhancing the security of correlated multicast networks. The results show that, although the diversity gain reduces the effect of correlation, the diversity gain provided by the SC diversity scheme is more significant in mitigating the effect of correlation compared to the SSC diversity scheme. Due to the selection mechanism of SC diversity, it is more sensitive to the change of SNR of the eavesdropper’s channel compared to the case of the SSC diversity scheme.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA01Z419), the Major Research plan of the National Natural Science Foundation of China (Grant No 90604023), National Laboratory for Moderm Communications Science Foundation of China (Grant No 9140C1101010601) and the 0pen Foundation of State Key Laboratory of Information Security (Graduate School of Chinese Academy of Sciences).
文摘In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.
基金Supported by the National Natural Science Foun-dation of China (60473072)
文摘Yoon and Yoo recently proposed a robust authenticated encryption scheme and claimed their scheme has the properties of forward secrecy and confidentiality. The current paper, however, points out that Yoon-Yoo's scheme also can not provide forward secrecy and confidentiality such that any adversary can easily recover the transferred message. Based on intractability of reversing the one-way hash function and discrete logarithm problem, an improved authenticated encryption scheme with messages linkage is proposed. The above security faults get solved perfectly. The new scheme is proven to satisfy all the basic security requirements of the authenticated encryption scheme. And by the concrete comparison, it has the similar efficiency of the original scheme.
文摘A multilevel secure relation hierarchical data model for multilevel secure database is extended from the relation hierarchical data model in single level environment in this paper. Based on the model, an upper lower layer relationalintegrity is presented after we analyze and eliminate the covert channels caused by the database integrity.Two SQL statements are extended to process polyinstantiation in the multilevel secure environment.The system based on the multilevel secure relation hierarchical data model is capable of integratively storing and manipulating complicated objects ( e.g. , multilevel spatial data) and conventional data ( e.g. , integer, real number and character string) in multilevel secure database.
文摘This paper proposes a security policy model for mandatory access control in class B1 database management system whose level of labeling is tuple. The relation hierarchical data model is extended to multilevel relation hierarchical data model. Based on the multilevel relation hierarchical data model, the concept of upper lower layer relational integrity is presented after we analyze and eliminate the covert channels caused by the database integrity. Two SQL statements are extended to process polyinstantiation in the multilevel secure environment. The system is based on the multilevel relation hierarchical data model and is capable of integratively storing and manipulating multilevel complicated objects ( e.g., multilevel spatial data) and multilevel conventional data ( e.g., integer, real number and character string).