This paper presents an improved three-dimensional non-equilibrium mixing pool model.It is a simplified form of the original model and is more practical for applications.The simulation re-sults show that the industrial...This paper presents an improved three-dimensional non-equilibrium mixing pool model.It is a simplified form of the original model and is more practical for applications.The simulation re-sults show that the industrial scale distillation tray columns can be described closely by the improvedmodel.The effects of model parameters,such as the number of mixing pools,the point efficiencyand flow pattern,on separation are analyzed quantitatively.展开更多
This paper deals with an extension of the one-period model in non-life insurance markets (cf. [1]) by using a transition probability matrix depending on some economic factors. We introduce a multi-period model and in ...This paper deals with an extension of the one-period model in non-life insurance markets (cf. [1]) by using a transition probability matrix depending on some economic factors. We introduce a multi-period model and in each period the solvency constraints will be updated. Moreover, the model has the inactive state including some uninsured population. Similar results on the existence of premium equilibrium and sensitivity analysis for this model are presented and illustrated by numerical results.展开更多
In this work, a study involving the fully coupled Euler and Navier-Stokes reactive equations is performed. These equations, in conservative and finite volume contexts, employing structured spatial discretization, on a...In this work, a study involving the fully coupled Euler and Navier-Stokes reactive equations is performed. These equations, in conservative and finite volume contexts, employing structured spatial discretization, on a condition of thermochemical non-equilibrium, are analyzed. High-order studies are accomplished using the Spectral method of Streett, Zang, and Hussaini. The high enthalpy hypersonic flows around a circumference, around a reentry capsule, along a blunt body, and along a double ellipse in two-dimensions are simulated. The Van Leer, Liou and Steffen Jr., and Steger and Warming flux vector splitting algorithms are applied to execute the numerical experiments. Three temperatures, which are the translational-rotational temperature, the vibrational temperature, and the electron temperature, are used to accomplish the numerical comparisons. Excellent results were obtained with minimum errors inferior to 6.0%. The key contribution of this work is the correct implementation of a three temperature model coupled with the implementation of three algorithms to perform the numerical simulations, as well the description of energy exchange mechanisms to perform more realistic simulations.展开更多
Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical...Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.展开更多
In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance betw...In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions.Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature(T_e, T_i), areal density(q R), and seed magnetic field-dependent free parameters of B/q, mB, and BR. For B/ρ < 10~6 G cm^3 g^(-1),mB < 4 × 10~4 G cm g^(-1), and BR <3 × 10~5 G cm, the minimum fuel areal density exceeds between ρR >0.002 g cm^(-2), ρR> 0.25 g cm^(-2), and ρR > 0.02 g cm^(-2),respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥(6.13–4.64) × 10~5 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.展开更多
<span style="font-family:Verdana;">For Madagascar, with the uncertainty over vaccines against the novel coronavirus 2019 and its variants, non-pharmaceutical approach is widely used. Our objective is t...<span style="font-family:Verdana;">For Madagascar, with the uncertainty over vaccines against the novel coronavirus 2019 and its variants, non-pharmaceutical approach is widely used. Our objective is to propose a mathematical control model which will serve as a tool to help decision-makers in the strategy to be implemented to better face the pandemic</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> By separating asymptomatic cases which are often not reported and symptomatic who are hospitalized after tests;we develop a mathematical model of the propagation of covid-19 in Madagascar, by integrating control strategies. We study the stability of the model by expressing the basic reproduction number using the next-generation matrix. Simulation with different parameters shows the effects of non-pharmaceutical measures on the speed of the disease spread. By integrating a control parameter linked to compliance with barrier measures in the virus propagation equation, we were able to show the impacts of the implementation of social distancing measures on the basic reproduction number. The strict application of social distancing measures and total confinement </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> unfavorable for economic situation even if they allow the contamination to be reduced quickly. Without any restrictions, the disease spreads at high speed and the peak is reached fairly quickly. In this condition, hospitals are overwhelmed and the death rate increases rapidly. With 50% respect for non-pharmaceutical strategies such as rapid detection and isolation of positive cases and barrier gestures;the basic reproduction number </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">R</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> can go down from 3 to 1.7. The pressures on the economic and social situation are rather viable. It is the most suitable for the Malagasy health system. The results proposed are a way to control the spread of the disease and limit its devastation in a country like Madagascar.</span></span></span>展开更多
The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This...The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.展开更多
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equ...All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numer- ical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require fur- ther expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional dis- tinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of con- structing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm develop- ment. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be mod- eled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of dis- crete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydro- dynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.展开更多
A second-order dynamic phase transition in a non-equilibrium Eggers urn model for the separation of sand is studied. The order parameter, the susceptibility and the stationary probability distribution have been calcul...A second-order dynamic phase transition in a non-equilibrium Eggers urn model for the separation of sand is studied. The order parameter, the susceptibility and the stationary probability distribution have been calculated. By applying the Lee-Yang zeros method of equilibrium phase transitions, we study the distributions of the effective partition function zeros and obtain the same result for the model. Thus, the Lee-Yang theory can be applied to a more general non-equilibrium system.展开更多
The application of the non equilibrium stage model to the multicomponent, non ideal liquid liquid extraction process is described in this paper. Pilot plant experiments and a commercial process of aromatic separati...The application of the non equilibrium stage model to the multicomponent, non ideal liquid liquid extraction process is described in this paper. Pilot plant experiments and a commercial process of aromatic separation by sulfolane in sieve tray extraction columns were chosen as examples to show the advantages and benefits of the non equilibrium stage model over the conventional model.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘This paper presents an improved three-dimensional non-equilibrium mixing pool model.It is a simplified form of the original model and is more practical for applications.The simulation re-sults show that the industrial scale distillation tray columns can be described closely by the improvedmodel.The effects of model parameters,such as the number of mixing pools,the point efficiencyand flow pattern,on separation are analyzed quantitatively.
文摘This paper deals with an extension of the one-period model in non-life insurance markets (cf. [1]) by using a transition probability matrix depending on some economic factors. We introduce a multi-period model and in each period the solvency constraints will be updated. Moreover, the model has the inactive state including some uninsured population. Similar results on the existence of premium equilibrium and sensitivity analysis for this model are presented and illustrated by numerical results.
文摘In this work, a study involving the fully coupled Euler and Navier-Stokes reactive equations is performed. These equations, in conservative and finite volume contexts, employing structured spatial discretization, on a condition of thermochemical non-equilibrium, are analyzed. High-order studies are accomplished using the Spectral method of Streett, Zang, and Hussaini. The high enthalpy hypersonic flows around a circumference, around a reentry capsule, along a blunt body, and along a double ellipse in two-dimensions are simulated. The Van Leer, Liou and Steffen Jr., and Steger and Warming flux vector splitting algorithms are applied to execute the numerical experiments. Three temperatures, which are the translational-rotational temperature, the vibrational temperature, and the electron temperature, are used to accomplish the numerical comparisons. Excellent results were obtained with minimum errors inferior to 6.0%. The key contribution of this work is the correct implementation of a three temperature model coupled with the implementation of three algorithms to perform the numerical simulations, as well the description of energy exchange mechanisms to perform more realistic simulations.
基金Project supported by the National Natural Science Foundation of China(No.10272070)and the Development Foun-dation of the Education Commission of Shanghai,China.
文摘Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.
文摘In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions.Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature(T_e, T_i), areal density(q R), and seed magnetic field-dependent free parameters of B/q, mB, and BR. For B/ρ < 10~6 G cm^3 g^(-1),mB < 4 × 10~4 G cm g^(-1), and BR <3 × 10~5 G cm, the minimum fuel areal density exceeds between ρR >0.002 g cm^(-2), ρR> 0.25 g cm^(-2), and ρR > 0.02 g cm^(-2),respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥(6.13–4.64) × 10~5 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.
文摘<span style="font-family:Verdana;">For Madagascar, with the uncertainty over vaccines against the novel coronavirus 2019 and its variants, non-pharmaceutical approach is widely used. Our objective is to propose a mathematical control model which will serve as a tool to help decision-makers in the strategy to be implemented to better face the pandemic</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> By separating asymptomatic cases which are often not reported and symptomatic who are hospitalized after tests;we develop a mathematical model of the propagation of covid-19 in Madagascar, by integrating control strategies. We study the stability of the model by expressing the basic reproduction number using the next-generation matrix. Simulation with different parameters shows the effects of non-pharmaceutical measures on the speed of the disease spread. By integrating a control parameter linked to compliance with barrier measures in the virus propagation equation, we were able to show the impacts of the implementation of social distancing measures on the basic reproduction number. The strict application of social distancing measures and total confinement </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> unfavorable for economic situation even if they allow the contamination to be reduced quickly. Without any restrictions, the disease spreads at high speed and the peak is reached fairly quickly. In this condition, hospitals are overwhelmed and the death rate increases rapidly. With 50% respect for non-pharmaceutical strategies such as rapid detection and isolation of positive cases and barrier gestures;the basic reproduction number </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">R</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> can go down from 3 to 1.7. The pressures on the economic and social situation are rather viable. It is the most suitable for the Malagasy health system. The results proposed are a way to control the spread of the disease and limit its devastation in a country like Madagascar.</span></span></span>
基金supported by the National Natural Science Foundation of China(Grant No.60776034)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.
基金supported by Hong Kong Research Grant Council (Grants 621011,620813 and 16211014)HKUST(IRS15SC29 and SBI14SC11)
文摘All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numer- ical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require fur- ther expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional dis- tinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of con- structing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm develop- ment. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be mod- eled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of dis- crete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydro- dynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.
基金Project supported by the National Natural Science Foundation of China (Grant No 10175035)the Foundation for Outstanding Young Teacher of Ministry of Education of China
文摘A second-order dynamic phase transition in a non-equilibrium Eggers urn model for the separation of sand is studied. The order parameter, the susceptibility and the stationary probability distribution have been calculated. By applying the Lee-Yang zeros method of equilibrium phase transitions, we study the distributions of the effective partition function zeros and obtain the same result for the model. Thus, the Lee-Yang theory can be applied to a more general non-equilibrium system.
文摘The application of the non equilibrium stage model to the multicomponent, non ideal liquid liquid extraction process is described in this paper. Pilot plant experiments and a commercial process of aromatic separation by sulfolane in sieve tray extraction columns were chosen as examples to show the advantages and benefits of the non equilibrium stage model over the conventional model.