We investigate the population and several properties of radio pulsars whose emission does not null(non-nulling)through simulation of a large pulsar sample.Emission from a pulsar is identified as non-nulling if(i)the e...We investigate the population and several properties of radio pulsars whose emission does not null(non-nulling)through simulation of a large pulsar sample.Emission from a pulsar is identified as non-nulling if(i)the emission does not cease across the whole pulse profile,and(ii)the emission is detectable.For(i),we adopt a model for switching in the plasma charge density,and emission persists if the charge density is non-zero.For(ii),we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight.We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42°.5,and almost half the samples maintain a duty cycle between 0.05 and 0.2.Furthermore,the pulsar population is not fixed but dependent on the obliquity angle,with the population peaking at 20°.In addition,three evolutionary phases are identified in the pulsar population as the obliquity angle evolves,with the majority of samples having an obliquity angle between 20°and 65°.Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.展开更多
Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decom...Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decomposed into a series of matrices with respect to the assumed strain modes. The formulation presented in this paper is different from any other non linear mixed/hybrid element formulation all successful experience of linear hybrid formulation is absorbed into the formulation(adding non conforming modes and realizing orthogonalization) Numerical results show that the present approach is more effective than any other non linear hybrid element formulation over the accuracy and computational efficiency. In addition, non conforming modes can also overcome the shear locking effect.展开更多
Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are invest...Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are investigated.A non?pneumatic mechanical elastic wheel(NPMEW)is introduced and investigated as a function of static radical stiffness characteristics and contact behavior.A bench test method is utilized to improve the riding comfort and the traction traffic ability of NPMEW based on tire characteristics test rig,and the static radical stiffness characteristics and the contact behavior of NPMEW are compared with that of an insert supporting run?flat tire(ISRFT).The vertical force?deformation curves and deformed shapes and contact areas of the NPMEW and ISRFT are obtained using a set of vertical loads.The contact behavior is evaluated using extracted geometrical and mechanical feature parameters of the two tires.The results indicate that the NPMEW appears to exhibit considerably high radical stiffness,and the numerical value is dependent on the mechanical characteristic of the flexible tire body and hinge units.NPMEW demonstrates more uniform contact pressure than ISRFT within a certain loading range,and it can efficiently mitigate the problem of stress concentration in ISRFT shoulder under heavy load and enhance the wear resistance and ground grip performances.展开更多
Underground lifeline engineering (ULE for short) in modern city demands the appreciation of an active fault in buried bedrock . Generally speaking , a large number of urban geological textures of a basement may all be...Underground lifeline engineering (ULE for short) in modern city demands the appreciation of an active fault in buried bedrock . Generally speaking , a large number of urban geological textures of a basement may all be simplified into a dual geological texture model , i. e., the upper part of the basement consists of loose covering layer and the lower part consists of bedrock . The study of an active fault should include three parts of contents , i . e ., to determine the lower time limit of activity of the fault , and the time limit must be recognized by both of designing engineers and geologists ; on the basis of the studies of repetition periods of earthquake occurrence to deter mine whether the fault moves or not during the allowed time of efficacy of buildings and constructions ; for the sake of engineering practice , the active rate of the fault must be given . The fault with different active mechanism has different effects on the ULE . The authors studied the effect of lateral non-uniform overburden site on the ULE by means of the supersonic earthquake modelling . Owing to the lateral non - uniformity of the covering sediments , there occurs an obvious jump of amplitude of the seismic wave propagation near the contact surface between two different sedi ments . In addition , from the modelling experiment curves it may be seen that the different focus mechanisms and different medium characters may also exert an effect in different degrees .展开更多
基金supported by the National SKA Program of China No.2020SKA0120200the National Key Program for Science and Technology Research and Development No.2022YFC2205201+2 种基金the National Natural Science Foundation of China(NSFC,grant Nos.12288102,12041303,and 12041304)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region No.2022A03013-2the open program of the Key Laboratory of Xinjiang Uygur Autonomous Region No.2020D04049。
文摘We investigate the population and several properties of radio pulsars whose emission does not null(non-nulling)through simulation of a large pulsar sample.Emission from a pulsar is identified as non-nulling if(i)the emission does not cease across the whole pulse profile,and(ii)the emission is detectable.For(i),we adopt a model for switching in the plasma charge density,and emission persists if the charge density is non-zero.For(ii),we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight.We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42°.5,and almost half the samples maintain a duty cycle between 0.05 and 0.2.Furthermore,the pulsar population is not fixed but dependent on the obliquity angle,with the population peaking at 20°.In addition,three evolutionary phases are identified in the pulsar population as the obliquity angle evolves,with the majority of samples having an obliquity angle between 20°and 65°.Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.
文摘Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decomposed into a series of matrices with respect to the assumed strain modes. The formulation presented in this paper is different from any other non linear mixed/hybrid element formulation all successful experience of linear hybrid formulation is absorbed into the formulation(adding non conforming modes and realizing orthogonalization) Numerical results show that the present approach is more effective than any other non linear hybrid element formulation over the accuracy and computational efficiency. In addition, non conforming modes can also overcome the shear locking effect.
基金supported in part by the National Natural Science Foundations of China (Nos.51605215, 11672127)the National Science Foundations for Post-Doctoral Scientists of China (Nos.2018M630593, 2019T120450)+1 种基金Research Foundations of Nanjing Institute of Technology (Nos. QKJ201707, PTKJ201702)the Qing Lan Project
文摘Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are investigated.A non?pneumatic mechanical elastic wheel(NPMEW)is introduced and investigated as a function of static radical stiffness characteristics and contact behavior.A bench test method is utilized to improve the riding comfort and the traction traffic ability of NPMEW based on tire characteristics test rig,and the static radical stiffness characteristics and the contact behavior of NPMEW are compared with that of an insert supporting run?flat tire(ISRFT).The vertical force?deformation curves and deformed shapes and contact areas of the NPMEW and ISRFT are obtained using a set of vertical loads.The contact behavior is evaluated using extracted geometrical and mechanical feature parameters of the two tires.The results indicate that the NPMEW appears to exhibit considerably high radical stiffness,and the numerical value is dependent on the mechanical characteristic of the flexible tire body and hinge units.NPMEW demonstrates more uniform contact pressure than ISRFT within a certain loading range,and it can efficiently mitigate the problem of stress concentration in ISRFT shoulder under heavy load and enhance the wear resistance and ground grip performances.
基金The paper is one Part of a project supported by National Education Commitce Funds for Doctoral Faculty
文摘Underground lifeline engineering (ULE for short) in modern city demands the appreciation of an active fault in buried bedrock . Generally speaking , a large number of urban geological textures of a basement may all be simplified into a dual geological texture model , i. e., the upper part of the basement consists of loose covering layer and the lower part consists of bedrock . The study of an active fault should include three parts of contents , i . e ., to determine the lower time limit of activity of the fault , and the time limit must be recognized by both of designing engineers and geologists ; on the basis of the studies of repetition periods of earthquake occurrence to deter mine whether the fault moves or not during the allowed time of efficacy of buildings and constructions ; for the sake of engineering practice , the active rate of the fault must be given . The fault with different active mechanism has different effects on the ULE . The authors studied the effect of lateral non-uniform overburden site on the ULE by means of the supersonic earthquake modelling . Owing to the lateral non - uniformity of the covering sediments , there occurs an obvious jump of amplitude of the seismic wave propagation near the contact surface between two different sedi ments . In addition , from the modelling experiment curves it may be seen that the different focus mechanisms and different medium characters may also exert an effect in different degrees .