The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-ener...The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance.展开更多
The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes...The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats-Redfern method to be in the range 61.6 kJ/mol-142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively.展开更多
The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting s...The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property.展开更多
Crankshaft assembly failure is one of the main factors that affects the reliability and service life of engines.The linear lumped mass method,which has been universally applied to the dynamic modeling of engine cranks...Crankshaft assembly failure is one of the main factors that affects the reliability and service life of engines.The linear lumped mass method,which has been universally applied to the dynamic modeling of engine crankshaft assembly,reveals obvious simulation errors.The nonlinear dynamic characteristics of a crankshaft assembly are instructionally significant to the improvement of modeling correctness.In this paper,a general expression for the non-constant inertia of a crankshaft assembly is derived based on the instantaneous kinetic energy equivalence method.The nonlinear dynamic equations of a multi-cylinder crankshaft assembly are established using the Lagrange rule considering nonlinear factors such as the non-constant inertia of reciprocating components and the structural damping of shaft segments.The natural frequency and mode shapes of a crankshaft assembly are investigated employing the eigenvector method.The forced vibration response of a diesel engine crankshaft assembly taking into account the non-constant inertia is studied using the numerical integral method.The simulation results are compared with a lumped mass model and a detailed model using the system matrix method.Results of non-linear torsional vibration analysis indicate that the additional excitation torque created by non-constant inertia activates the 2nd order rolling vibration,and the additional damping torque resulting from the non-constant inertia is the main nonlinear factor.The increased torsional angular displacement evoked by the high order excitation torque relates to the non-constant inertia.This research project is aimed at improving nonlinear dynamics theory,and the confirmed nonlinear parameters can be used for the structure design of a crankshaft assembly.展开更多
The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation, based on the combustion dynamical model of SHS process. It is shown that with the change of co...The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation, based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear. It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.展开更多
Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted ba...Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted barium ferrite annealing at 1000 ℃, the vibrating sample magnetometer (VSM) measurement manifested that the optimum magnetic properties formation temperature of Al-substituted barium ferrite was 1 100 ℃. The data from X-ray diffractometer (XRD) showed that with increasing x, the lattice constants (a and c) decreased as well as the unit-cell volume Vcell. Magnetic measurement of non-substituted and Al-substituted powders annealed from 900 ℃ to 1 200 ℃ exhibited that the maximum magnetization M (10 kOe), the remanent magnetization Mr and the coercivity Hc depended strongly on the chemical composition of powder as well as the annealing temperature. When annealing at 1 100 ℃, BaAl0.5Fe11.5O19 of high coercivity Hc (6584 Oe) was produced. Meanwhile, M (10 kOe) and Mr were 42.83 emu/g and 25.65 emu/g, respectively.展开更多
A micro fluidized bed reactor was used to study the self-sustaining catalytic combustion of carbon monoxide(CO).The Cu_(1−x)Ce_(x)O_(y) catalyst,as well as the pure CuO and CeO_(2),are used to investigate the contribu...A micro fluidized bed reactor was used to study the self-sustaining catalytic combustion of carbon monoxide(CO).The Cu_(1−x)Ce_(x)O_(y) catalyst,as well as the pure CuO and CeO_(2),are used to investigate the contributing mechanism of different active sites including dispersed CuO and Cu–Ce solid solutions.The ignition temperature(Ti)of CO over these catalysts at a flow rate of 2000 mL/min followed the order:74℃(Cu_(0.5)Ce_(0.5)O_(y))<75℃(Cu_(0.25)Ce_(0.75)O_(y))<84℃(Cu_(0.75)Ce_(0.25)O_(y))<105℃(CuO)<500℃(CeO_(2)).Furthermore,the lean combustion limits(equivalence ratioϕ)over these catalysts under the flow rates of 750–3000 mL/min(through fixed,bubbling,and fluidized bed)were also measured,which are Cu_(0.5)Ce_(0.5)O_(y)<Cu_(0.25)Ce_(0.75)Oy<Cu_(0.75)Ce_(0.25)O_(y)<CuO<CeO_(2).The fluidized bed was simulated using the Eulerian two-fluid model(TFM)coupled with a diffusion/kinetic-limited reaction model to evaluate the influence of operation conditions on the self-sustained combustion of CO.The predicted maximum temperature agreed with the experimental measurements,demonstrating the validity of the kinetic model and simulation parameters.The results of catalytic combustion with increasing CO concentrations suggest that the catalytic combustion reaction could co-exist with the flamed combustion.When a high concentration of CO is used,a blue-purple flame caused by CO combustion appears in the upper part of the fluidized bed,indicating that the range of CO-containing exhaust gas purification could be expanded to a larger range using the fluidized-bed catalytic combustion technique.展开更多
基金supported by the Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.20fksy18)。
文摘The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61154002 and 51078331)the China Postdoctoral Science Foundation(Grant No. 20090451471)the Natural Science Foundation of Zhejiang Province,China (Grant No. Z1110222)
文摘The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats-Redfern method to be in the range 61.6 kJ/mol-142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively.
基金Project supported by the National Natural Science Foundation of China (20476002)
文摘The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property.
基金supported by National Natural Science Foundation of China (Grant No. 50975026)Ministerial Eleventh Five-Year Plan Basic Product Pre-research Project of China (Grant No. D2220062905)
文摘Crankshaft assembly failure is one of the main factors that affects the reliability and service life of engines.The linear lumped mass method,which has been universally applied to the dynamic modeling of engine crankshaft assembly,reveals obvious simulation errors.The nonlinear dynamic characteristics of a crankshaft assembly are instructionally significant to the improvement of modeling correctness.In this paper,a general expression for the non-constant inertia of a crankshaft assembly is derived based on the instantaneous kinetic energy equivalence method.The nonlinear dynamic equations of a multi-cylinder crankshaft assembly are established using the Lagrange rule considering nonlinear factors such as the non-constant inertia of reciprocating components and the structural damping of shaft segments.The natural frequency and mode shapes of a crankshaft assembly are investigated employing the eigenvector method.The forced vibration response of a diesel engine crankshaft assembly taking into account the non-constant inertia is studied using the numerical integral method.The simulation results are compared with a lumped mass model and a detailed model using the system matrix method.Results of non-linear torsional vibration analysis indicate that the additional excitation torque created by non-constant inertia activates the 2nd order rolling vibration,and the additional damping torque resulting from the non-constant inertia is the main nonlinear factor.The increased torsional angular displacement evoked by the high order excitation torque relates to the non-constant inertia.This research project is aimed at improving nonlinear dynamics theory,and the confirmed nonlinear parameters can be used for the structure design of a crankshaft assembly.
基金Funded by the National Natural Science Foundation of Chi-na(50062001)
文摘The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation, based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear. It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.0452nm049)
文摘Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted barium ferrite annealing at 1000 ℃, the vibrating sample magnetometer (VSM) measurement manifested that the optimum magnetic properties formation temperature of Al-substituted barium ferrite was 1 100 ℃. The data from X-ray diffractometer (XRD) showed that with increasing x, the lattice constants (a and c) decreased as well as the unit-cell volume Vcell. Magnetic measurement of non-substituted and Al-substituted powders annealed from 900 ℃ to 1 200 ℃ exhibited that the maximum magnetization M (10 kOe), the remanent magnetization Mr and the coercivity Hc depended strongly on the chemical composition of powder as well as the annealing temperature. When annealing at 1 100 ℃, BaAl0.5Fe11.5O19 of high coercivity Hc (6584 Oe) was produced. Meanwhile, M (10 kOe) and Mr were 42.83 emu/g and 25.65 emu/g, respectively.
基金support from the National Natural Science Foundation of China(No.52176141).
文摘A micro fluidized bed reactor was used to study the self-sustaining catalytic combustion of carbon monoxide(CO).The Cu_(1−x)Ce_(x)O_(y) catalyst,as well as the pure CuO and CeO_(2),are used to investigate the contributing mechanism of different active sites including dispersed CuO and Cu–Ce solid solutions.The ignition temperature(Ti)of CO over these catalysts at a flow rate of 2000 mL/min followed the order:74℃(Cu_(0.5)Ce_(0.5)O_(y))<75℃(Cu_(0.25)Ce_(0.75)O_(y))<84℃(Cu_(0.75)Ce_(0.25)O_(y))<105℃(CuO)<500℃(CeO_(2)).Furthermore,the lean combustion limits(equivalence ratioϕ)over these catalysts under the flow rates of 750–3000 mL/min(through fixed,bubbling,and fluidized bed)were also measured,which are Cu_(0.5)Ce_(0.5)O_(y)<Cu_(0.25)Ce_(0.75)Oy<Cu_(0.75)Ce_(0.25)O_(y)<CuO<CeO_(2).The fluidized bed was simulated using the Eulerian two-fluid model(TFM)coupled with a diffusion/kinetic-limited reaction model to evaluate the influence of operation conditions on the self-sustained combustion of CO.The predicted maximum temperature agreed with the experimental measurements,demonstrating the validity of the kinetic model and simulation parameters.The results of catalytic combustion with increasing CO concentrations suggest that the catalytic combustion reaction could co-exist with the flamed combustion.When a high concentration of CO is used,a blue-purple flame caused by CO combustion appears in the upper part of the fluidized bed,indicating that the range of CO-containing exhaust gas purification could be expanded to a larger range using the fluidized-bed catalytic combustion technique.