The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal ...The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal strain force of the left ventricle with the changes in the left ventricular pressure, allowing earlier detection of possible subclinical cardiac damage in patients, and a more accurate and non-invasive assessment of the patient’s myocardial work performance. In this article, we will discuss the progress of PSL applications in cardiovascular diseases.展开更多
A new particle filter is presented for nonlinear tracking problems. Inpractice, maneuvering target-tracking systems are usually nonlinear and incompletely observed, andthe main difficulty of maneuvering target-trackin...A new particle filter is presented for nonlinear tracking problems. Inpractice, maneuvering target-tracking systems are usually nonlinear and incompletely observed, andthe main difficulty of maneuvering target-tracking problem lies in the fact that the maneuverabilityat every step is of high uncertainties. Here a new smoothing particle filter algorithm is proposed,which combines the particle filter to tackle the non-linear and non-Gaussian peculiarities of theproblem, together with smoothing of the PDF of system modes and thus settles the estimate problem ofthe target maneuverability. The simulation comparison with the auxiliary particle filters showsthat the approach has superiority and yields performance improvements in solving nonlinear trackingproblems.展开更多
The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three con...The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.展开更多
A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model ident...A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.展开更多
To track human across non-overlapping cameras in depression angles for applications such as multi-airplane visual human tracking and urban multi-camera surveillance,an adaptive human tracking method is proposed,focusi...To track human across non-overlapping cameras in depression angles for applications such as multi-airplane visual human tracking and urban multi-camera surveillance,an adaptive human tracking method is proposed,focusing on both feature representation and human tracking mechanism.Feature representation describes individual by using both improved local appearance descriptors and statistical geometric parameters.The improved feature descriptors can be extracted quickly and make the human feature more discriminative.Adaptive human tracking mechanism is based on feature representation and it arranges the human image blobs in field of view into matrix.Primary appearance models are created to include the maximum inter-camera appearance information captured from different visual angles.The persons appeared in camera are first filtered by statistical geometric parameters.Then the one among the filtered persons who has the maximum matching scale with the primary models is determined to be the target person.Subsequently,the image blobs of the target person are used to update and generate new primary appearance models for the next camera,thus being robust to visual angle changes.Experimental results prove the excellence of the feature representation and show the good generalization capability of tracking mechanism as well as its robustness to condition variables.展开更多
A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of ...A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of the states is Gaussian or can be identified as a Gaussian sum, the analytical results of the algorithm show that the posterior intensity at any subsequent time step remains a Gaussian sum under the assumption that the state noise, the measurement noise, target spawn intensity, new target birth intensity, target survival probability, and detection probability are all Gaussian sums. The analysis also shows that the existing Gaussian mixture probability hypothesis density (GMPHD) filter, which is unsuitable for handling the non-Gaussian noise cases, is no more than a special case of the proposed algorithm, which fills the shortage of incapability of treating non-Gaussian noise. The multi-target tracking simulation results verify the effectiveness of the proposed GSPHD.展开更多
作为非平稳信号的重要特征,瞬时频率(instantaneous frequency,IF)和瞬时调频率(instantaneous frequency rate,IFR)的准确估计具有重要意义。现有方法在处理存在时频交叠的多分量非平稳信号时易发生关联错误等问题。短时调频傅里叶变...作为非平稳信号的重要特征,瞬时频率(instantaneous frequency,IF)和瞬时调频率(instantaneous frequency rate,IFR)的准确估计具有重要意义。现有方法在处理存在时频交叠的多分量非平稳信号时易发生关联错误等问题。短时调频傅里叶变换通过将信号在时间频率调频率三维空间中进行表征,使不同分量发生交叠的可能性大幅降低,且基于频率调频率的变化规律可实现分量的时序关联。据此,提出一种基于检测跟踪算法的多分量IF-IFR估计方法。首先,针对传统检测算法在噪声环境下精度不足问题,提出了基于改进YOLOX网络的检测方法,实现了信号瞬时频率调频率的估计和瞬时形状特征的提取。然后,提出基于卡尔曼滤波的瞬时估计值和形状特征时序关联方法,以形成稳定连续的多分量IF和IFR估计。通过仿真及实测实验对所提算法进行了验证,在设置的仿真场景中,-5 dB信噪比条件下最优估计误差小于0.8 Hz,证明了所提方法的有效性。展开更多
文摘The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal strain force of the left ventricle with the changes in the left ventricular pressure, allowing earlier detection of possible subclinical cardiac damage in patients, and a more accurate and non-invasive assessment of the patient’s myocardial work performance. In this article, we will discuss the progress of PSL applications in cardiovascular diseases.
文摘A new particle filter is presented for nonlinear tracking problems. Inpractice, maneuvering target-tracking systems are usually nonlinear and incompletely observed, andthe main difficulty of maneuvering target-tracking problem lies in the fact that the maneuverabilityat every step is of high uncertainties. Here a new smoothing particle filter algorithm is proposed,which combines the particle filter to tackle the non-linear and non-Gaussian peculiarities of theproblem, together with smoothing of the PDF of system modes and thus settles the estimate problem ofthe target maneuverability. The simulation comparison with the auxiliary particle filters showsthat the approach has superiority and yields performance improvements in solving nonlinear trackingproblems.
文摘The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.
基金supported by National Natural Science Foundationof China (No. 60472065, No. 60774013).
文摘A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.
基金funded by the Natural Science Foundation of Jiangsu Province(No.BK2012389)the National Natural Science Foundation of China(Nos.71303110,91024024)the Foundation of Graduate Innovation Center in NUAA(Nos.kfjj201471,kfjj201473)
文摘To track human across non-overlapping cameras in depression angles for applications such as multi-airplane visual human tracking and urban multi-camera surveillance,an adaptive human tracking method is proposed,focusing on both feature representation and human tracking mechanism.Feature representation describes individual by using both improved local appearance descriptors and statistical geometric parameters.The improved feature descriptors can be extracted quickly and make the human feature more discriminative.Adaptive human tracking mechanism is based on feature representation and it arranges the human image blobs in field of view into matrix.Primary appearance models are created to include the maximum inter-camera appearance information captured from different visual angles.The persons appeared in camera are first filtered by statistical geometric parameters.Then the one among the filtered persons who has the maximum matching scale with the primary models is determined to be the target person.Subsequently,the image blobs of the target person are used to update and generate new primary appearance models for the next camera,thus being robust to visual angle changes.Experimental results prove the excellence of the feature representation and show the good generalization capability of tracking mechanism as well as its robustness to condition variables.
基金National Natural Science Foundation of China (60572023)
文摘A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of the states is Gaussian or can be identified as a Gaussian sum, the analytical results of the algorithm show that the posterior intensity at any subsequent time step remains a Gaussian sum under the assumption that the state noise, the measurement noise, target spawn intensity, new target birth intensity, target survival probability, and detection probability are all Gaussian sums. The analysis also shows that the existing Gaussian mixture probability hypothesis density (GMPHD) filter, which is unsuitable for handling the non-Gaussian noise cases, is no more than a special case of the proposed algorithm, which fills the shortage of incapability of treating non-Gaussian noise. The multi-target tracking simulation results verify the effectiveness of the proposed GSPHD.