This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions ...This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius.Three different regimes are found:inertial wave attractor,global oscillations(the cavity’s resonant modes)and regime of symmetric reflection of wave beams.In linear wave regimes,a steady single vortex elongated along the rotation axis is generated.The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign.In non-linear regimes several pairs of the triadic resonance subharmonics are detected simultaneously.The instability of triadic resonance is accompanied by the periodic generation of mean vortices drifting in the azimuthal direction.Moreover,the appearance frequency of the vortices is consistent with the low-frequency subharmonic of the triadic resonance.The experimental results shed light on the mechanisms of the inertial wave interaction with zonal flow and may be useful for the development of new methods of mixing.展开更多
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor...The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.展开更多
In this paper, the nonlinear internal inerntial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ...In this paper, the nonlinear internal inerntial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ordinary solitary wave solution but also has another extra-ordinary solutions, and the form of solution is related to stratification stability, wave velocity and direction of wave motion.展开更多
Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observationa...Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.展开更多
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti...This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.展开更多
In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented ...In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented two approaches for synthesis the proportional-integral-derivative controller to the models of objects with inertia, that offer the procedure of system performance optimization based on maximum stability degree criterion. The proposed algorithms of system performance optimization were elaborated for model of objects with inertia second and third order and offer simple analytical expressions for tuning the PID controller. Validation and verification are conducted through computer simulations using MATLAB, demonstrating successful performance optimization and showcasing the effectiveness PID controllers’ tuning. The proposed approaches contribute insights to the field of control, offering a pathway for optimizing the performance of second and third-order inertial systems through robust controller synthesis.展开更多
In this paper, we study the long-time behavior of a class of generalized nonlinear Kichhoff equation under the condition of n dimension. Firstly, the Lipschitz property and squeezing property of the nonlinear semigrou...In this paper, we study the long-time behavior of a class of generalized nonlinear Kichhoff equation under the condition of n dimension. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup related to the initial-boundary value problem are proved, and then the existence of its exponential attractor is obtained. By extending the space <em>E</em><sub>0</sub> to <em>E<sub>k</sub></em>, a family of the exponential attractors of the initial-boundary value problem is obtained. In the second part, we consider the long-time behavior for a system of generalized Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of a family of the inertial manifolds while such equations satisfy the spectrum interval condition.展开更多
This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driv...This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.展开更多
With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This ...With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection(Skip-DSCGAN)for fall detection.The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data.A semisupervised learning approach is adopted to train the model using only activities of daily living(ADL)data,which can avoid data imbalance problems.Furthermore,a quantile-based approach is employed to determine the fall threshold,which makes the fall detection frameworkmore robust.This proposed fall detection framework is evaluated against four other generative adversarial network(GAN)models with superior anomaly detection performance using two fall public datasets(SisFall&MobiAct).The test results show that the proposed method achieves better results,reaching 96.93% and 92.75% accuracy on the above two test datasets,respectively.At the same time,the proposed method also achieves satisfactory results in terms ofmodel size and inference delay time,making it suitable for deployment on wearable devices with limited resources.In addition,this paper also compares GAN-based semisupervised learning methods with supervised learning methods commonly used in fall detection.It clarifies the advantages of GAN-based semisupervised learning methods in fall detection.展开更多
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ...Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.展开更多
This paper considers the long-time behavior for a system of coupled wave equations of higher-order Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of t...This paper considers the long-time behavior for a system of coupled wave equations of higher-order Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of the inertial manifold while such equations satisfy the spectral interval condition.展开更多
Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in th...Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.展开更多
In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To a...In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To address this, I propose dynamics hypotheses that lead to interesting results and numerous noteworthy scientific and technological applications. I constructed a new mathematical model in rotational field dynamics, and through this model, results based on a rational interpretation of the superposition of motions caused by torques were obtained. For this purpose, I analyze velocity and acceleration fields that are generated in an object with intrinsic angular momentum, and assessed new criteria for coupling velocities. In this context, I will discuss reactions and inertial fields that cannot be explained by classical mechanics. The experiments have been analyzed and explained in a video accompanying this text. I am not aware of any concurrent study on the subject and conclusions evidenced in this paper, preventing us from making additional theoretical com- parisons or indicate to the reader other sources to compare criteria.展开更多
We investigate flow structures,nonlinear inertial waves and energy transfer in a rotating fluid sphere,using a Galerkin spectral method based on helical-wave decomposition(HWD).Numerical simulations of flows in a sphe...We investigate flow structures,nonlinear inertial waves and energy transfer in a rotating fluid sphere,using a Galerkin spectral method based on helical-wave decomposition(HWD).Numerical simulations of flows in a sphere are performed with different system rotation rates,where a large-scale forcing is employed.For the case without system rotation,the intense vortex structures are tube-like.When a weak rotation is introduced,small-scale structures are reduced and vortex tubes tend to align with the rotation axis.As the rotation rate increases,a large-scale anticyclonic vortex structure is formed near the rotation axis.The structure is shown to be led by certain geostrophic modes.When the rotation rate further increases,a cyclone and an anticyclone emerge from the top and bottom of the boundary,respectively,where two quasi-geostrophic equatorially symmetric inertial waves dominate the flow.Based on HWD,effects of spherical confinement on rotating turbulence are systematically studied.It is found that the forward cascade becomes weaker as the rotation increases.When the rotation rate becomes larger than some critical value,dual energy cascades emerge,with an inverse cascade at large scales and a forward cascade at small scales.Finally,the flow behavior near the boundary is studied,where the average boundary layer thickness gets smaller when system rotation increases.The flow behavior in the boundary layer is closely related to the interior flow structures,which create significant mass flux between the boundary layer and the interior fluid through Ekman pumping.展开更多
We have succeeded in 2-slit interference simulation by assuming that a travelling particle interacts with its environment, getting information on the environmental condition according to the adaptive dynamics by Ohya,...We have succeeded in 2-slit interference simulation by assuming that a travelling particle interacts with its environment, getting information on the environmental condition according to the adaptive dynamics by Ohya, thus proposed the possibility that the entanglement comes from the interaction with the environment (Ando et al., 2023). This concept means that there should be no isolated or inertial system other than our unique universe space. Taking this message into account and assuming that the signal velocity is constant against our unique universe space, we reconsidered the inertial system and relativity theory by Galilei and Einstein and found several misunderstandings and errors. Time delay and Lorentz shrinkage were derived similarly to the prediction by special relativity theory, but Lorentz transformation and 4-dimensional time/space view were not. They must have implicitly and unconsciously assumed that any signals transfer information without giving any influences to any systems different from our adaptive dynamical view. We propose that their relativity theories should be reinterpreted in view of adaptive dynamics.展开更多
In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our me...In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our method requires only to compute one projection onto the feasible set per iteration and without any linesearch procedure or additional projections as well as does not need to the prior knowledge of the Lipschitz constant and the sequentially weakly continuity of the variational inequality mapping.A strong convergence is established for the proposed method to a solution of a variational inequality problem under certain mild assumptions.Finally,we give some numerical experiments illustrating the performance of the proposed method for variational inequality problems.展开更多
Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the...This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the smoothing effect of the solution, we make efficient use of the analytic property of the semigroup generated by the principal operator of the equation in the phase space. Then we obtain the regularity of the global attractor and construct the approximate inertial manifold of the equation. Finally, we prove that arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of the approximate inertial manifold after large time.展开更多
Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify th...Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify that the inertial reference system can perform reservation function under specified service conditions.That is,the inertial reference system shall pass certain environmental tests specified in DO⁃160G.Some tests are faced with the problem that the test equipment should have the function requirements of isolation protection and load simulation.Therefore,a kind of test equipment which can provide isolation protection and simulate load function in the test is designed.展开更多
Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful...Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful heavy-ion beams. Ions in HIB impinge on the pellet surface and deposit their energy in a relatively deep and wide area. Therefore, the non-uniformity of HIB irradiation should be evaluated in the volume of the deposition area in the absorber layer. By using the OK1 code with some corrections, the non-uniformity of heavy-ion beam irradiation for the different ion beams on two kinds of targets were evaluated in 12-beam, 20-beam, 60-beam and 120-beam irradiation schemes. The root-mean-square (RMS) non-uniformity value becomes aRMS = 8.39% in an aluminum mono-layer pellet structure and aRMS = 6.53% in a lead-aluminum layer target for the 12-uranium-beam system. The RMS non-uniformity for the lead-aluminum layer target was lower than that for the mono-layer target. The RMS and peak-to-valley (PTV) non-uniformities are reduced with the increase in beam number, and low at the Bragg peak layer.展开更多
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius.Three different regimes are found:inertial wave attractor,global oscillations(the cavity’s resonant modes)and regime of symmetric reflection of wave beams.In linear wave regimes,a steady single vortex elongated along the rotation axis is generated.The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign.In non-linear regimes several pairs of the triadic resonance subharmonics are detected simultaneously.The instability of triadic resonance is accompanied by the periodic generation of mean vortices drifting in the azimuthal direction.Moreover,the appearance frequency of the vortices is consistent with the low-frequency subharmonic of the triadic resonance.The experimental results shed light on the mechanisms of the inertial wave interaction with zonal flow and may be useful for the development of new methods of mixing.
基金supported in part by National Key Research and Development Program under Grant No.2020YFB1708800China Postdoctoral Science Foundation under Grant No.2021M700385+5 种基金Guang Dong Basic and Applied Basic Research Foundation under Grant No.2021A1515110577Guangdong Key Research and Development Program under Grant No.2020B0101130007Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant No.YDZJSX2022B019Fundamental Research Funds for Central Universities under Grant No.FRF-MP-20-37Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant No.FRF-IDRY-21-005National Natural Science Foundation of China under Grant No.62002026。
文摘The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.
文摘In this paper, the nonlinear internal inerntial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ordinary solitary wave solution but also has another extra-ordinary solutions, and the form of solution is related to stratification stability, wave velocity and direction of wave motion.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.SQ201206the Innovation Group Program of State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences,under contract No.LTOZZ1201+1 种基金the National Basic Research Program under contract No.2013CB956101the National Natural Science Foundation of China under contract No.41025019
文摘Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.
文摘This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.
文摘In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented two approaches for synthesis the proportional-integral-derivative controller to the models of objects with inertia, that offer the procedure of system performance optimization based on maximum stability degree criterion. The proposed algorithms of system performance optimization were elaborated for model of objects with inertia second and third order and offer simple analytical expressions for tuning the PID controller. Validation and verification are conducted through computer simulations using MATLAB, demonstrating successful performance optimization and showcasing the effectiveness PID controllers’ tuning. The proposed approaches contribute insights to the field of control, offering a pathway for optimizing the performance of second and third-order inertial systems through robust controller synthesis.
文摘In this paper, we study the long-time behavior of a class of generalized nonlinear Kichhoff equation under the condition of n dimension. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup related to the initial-boundary value problem are proved, and then the existence of its exponential attractor is obtained. By extending the space <em>E</em><sub>0</sub> to <em>E<sub>k</sub></em>, a family of the exponential attractors of the initial-boundary value problem is obtained. In the second part, we consider the long-time behavior for a system of generalized Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of a family of the inertial manifolds while such equations satisfy the spectrum interval condition.
基金the National Natural Science Foundation of China(Grant Numbers 52072157,52002156,52202471)Natural Science Foundation of Jiangsu Province(Grant Number BK20200911)+2 种基金Chongqing Key Laboratory of Urban Rail Transit System Integration and Control Open Fund(Grant Number CKLURVIOM_KFKT_2023001)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant Number 2022ZB659)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle,Hunan University(Grant Number 82315004).
文摘This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.
基金supported partly by the Natural Science Foundation of Zhejiang Province,China(LGF21F020017).
文摘With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection(Skip-DSCGAN)for fall detection.The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data.A semisupervised learning approach is adopted to train the model using only activities of daily living(ADL)data,which can avoid data imbalance problems.Furthermore,a quantile-based approach is employed to determine the fall threshold,which makes the fall detection frameworkmore robust.This proposed fall detection framework is evaluated against four other generative adversarial network(GAN)models with superior anomaly detection performance using two fall public datasets(SisFall&MobiAct).The test results show that the proposed method achieves better results,reaching 96.93% and 92.75% accuracy on the above two test datasets,respectively.At the same time,the proposed method also achieves satisfactory results in terms ofmodel size and inference delay time,making it suitable for deployment on wearable devices with limited resources.In addition,this paper also compares GAN-based semisupervised learning methods with supervised learning methods commonly used in fall detection.It clarifies the advantages of GAN-based semisupervised learning methods in fall detection.
基金supported by the National Natural Science Foundation of China under(Grant No.52175531)in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant(Grant Nos.KJQN202000605 and KJZD-M202000602)。
文摘Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.
文摘This paper considers the long-time behavior for a system of coupled wave equations of higher-order Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of the inertial manifold while such equations satisfy the spectral interval condition.
文摘Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.
文摘In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To address this, I propose dynamics hypotheses that lead to interesting results and numerous noteworthy scientific and technological applications. I constructed a new mathematical model in rotational field dynamics, and through this model, results based on a rational interpretation of the superposition of motions caused by torques were obtained. For this purpose, I analyze velocity and acceleration fields that are generated in an object with intrinsic angular momentum, and assessed new criteria for coupling velocities. In this context, I will discuss reactions and inertial fields that cannot be explained by classical mechanics. The experiments have been analyzed and explained in a video accompanying this text. I am not aware of any concurrent study on the subject and conclusions evidenced in this paper, preventing us from making additional theoretical com- parisons or indicate to the reader other sources to compare criteria.
基金This work has been supported by the National Natural Science Foundation of China(NSFC)Basic Sci-ence Sci-ence Center Program(No.11988102)and NSFC(No.91752201)Department of Science and Technology of Guangdong Province(No.2019B21203001)+1 种基金Shenzhen Science and Technology Innovation Commission(No.KQTD20180411143441009)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0103).
文摘We investigate flow structures,nonlinear inertial waves and energy transfer in a rotating fluid sphere,using a Galerkin spectral method based on helical-wave decomposition(HWD).Numerical simulations of flows in a sphere are performed with different system rotation rates,where a large-scale forcing is employed.For the case without system rotation,the intense vortex structures are tube-like.When a weak rotation is introduced,small-scale structures are reduced and vortex tubes tend to align with the rotation axis.As the rotation rate increases,a large-scale anticyclonic vortex structure is formed near the rotation axis.The structure is shown to be led by certain geostrophic modes.When the rotation rate further increases,a cyclone and an anticyclone emerge from the top and bottom of the boundary,respectively,where two quasi-geostrophic equatorially symmetric inertial waves dominate the flow.Based on HWD,effects of spherical confinement on rotating turbulence are systematically studied.It is found that the forward cascade becomes weaker as the rotation increases.When the rotation rate becomes larger than some critical value,dual energy cascades emerge,with an inverse cascade at large scales and a forward cascade at small scales.Finally,the flow behavior near the boundary is studied,where the average boundary layer thickness gets smaller when system rotation increases.The flow behavior in the boundary layer is closely related to the interior flow structures,which create significant mass flux between the boundary layer and the interior fluid through Ekman pumping.
文摘We have succeeded in 2-slit interference simulation by assuming that a travelling particle interacts with its environment, getting information on the environmental condition according to the adaptive dynamics by Ohya, thus proposed the possibility that the entanglement comes from the interaction with the environment (Ando et al., 2023). This concept means that there should be no isolated or inertial system other than our unique universe space. Taking this message into account and assuming that the signal velocity is constant against our unique universe space, we reconsidered the inertial system and relativity theory by Galilei and Einstein and found several misunderstandings and errors. Time delay and Lorentz shrinkage were derived similarly to the prediction by special relativity theory, but Lorentz transformation and 4-dimensional time/space view were not. They must have implicitly and unconsciously assumed that any signals transfer information without giving any influences to any systems different from our adaptive dynamical view. We propose that their relativity theories should be reinterpreted in view of adaptive dynamics.
基金funded by National University ofCivil Engineering(NUCE)under grant number 15-2020/KHXD-TD。
文摘In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our method requires only to compute one projection onto the feasible set per iteration and without any linesearch procedure or additional projections as well as does not need to the prior knowledge of the Lipschitz constant and the sequentially weakly continuity of the variational inequality mapping.A strong convergence is established for the proposed method to a solution of a variational inequality problem under certain mild assumptions.Finally,we give some numerical experiments illustrating the performance of the proposed method for variational inequality problems.
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
文摘This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the smoothing effect of the solution, we make efficient use of the analytic property of the semigroup generated by the principal operator of the equation in the phase space. Then we obtain the regularity of the global attractor and construct the approximate inertial manifold of the equation. Finally, we prove that arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of the approximate inertial manifold after large time.
文摘Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify that the inertial reference system can perform reservation function under specified service conditions.That is,the inertial reference system shall pass certain environmental tests specified in DO⁃160G.Some tests are faced with the problem that the test equipment should have the function requirements of isolation protection and load simulation.Therefore,a kind of test equipment which can provide isolation protection and simulate load function in the test is designed.
文摘Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful heavy-ion beams. Ions in HIB impinge on the pellet surface and deposit their energy in a relatively deep and wide area. Therefore, the non-uniformity of HIB irradiation should be evaluated in the volume of the deposition area in the absorber layer. By using the OK1 code with some corrections, the non-uniformity of heavy-ion beam irradiation for the different ion beams on two kinds of targets were evaluated in 12-beam, 20-beam, 60-beam and 120-beam irradiation schemes. The root-mean-square (RMS) non-uniformity value becomes aRMS = 8.39% in an aluminum mono-layer pellet structure and aRMS = 6.53% in a lead-aluminum layer target for the 12-uranium-beam system. The RMS non-uniformity for the lead-aluminum layer target was lower than that for the mono-layer target. The RMS and peak-to-valley (PTV) non-uniformities are reduced with the increase in beam number, and low at the Bragg peak layer.