The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynami...The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynamic equation and the Jacobian relation of a free-floating space rigid manipulator are established and then inverted to the state equation for control design. Based on the terminal sliding mode control (SMC) technique, a mathematical expression of the terminal sliding surface is proposed. The terminal SMC scheme is then developed for coordinated motion between the base's attitude and the end-effector of the free-floating space manipulator with external disturbance. This proposed control scheme not only guarantees the existence of the sliding phase of the closed-loop system, but also ensures that the output tracking error converges to zero in finite time. In addition, because the initial system state is always at the terminal sliding surface, the control scheme can eliminate reaching phase of the SMC and guarantee global robustness and stability of the closed-loop system. A planar free-floating space rigid manipulator is simulated to verify the feasibility of the proposed control scheme.展开更多
An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body sup...An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.展开更多
This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the d...This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the disturbance degree theory, as well as the spring-element model, by setting the rotation angle of the wall as the disturbance parameter, we establish both a depth distribution function for sand and a nonlinear depth distribution calculation method for the non-limit passive soil pressure on a rigid retaining wall under the RT model, which is then compared with experiment. The results suggest that under the RT model: the non-limit soil pressure has a nonlinear distribution; the backfill disturbance degree and the lateral soil pressure increase with an increase in the wall rotation angle; and, the points where the resultant lateral soil pressure acts on the retaining wall are less than 2/3 of the height of the wall. The soil pressure predicted by the theoretical calculation put forward in this paper are quite similar to those obtained by the model experiment, which verifies the theoretical value, and the engineering guidance provided by the calculations are of significance.展开更多
A unilateral non-penetration constraint dynamical simulation model withfriction is constructed based on compliant model for mechanical system VP (virtual prototyping)simulation. This model combines computer graphics w...A unilateral non-penetration constraint dynamical simulation model withfriction is constructed based on compliant model for mechanical system VP (virtual prototyping)simulation. This model combines computer graphics with multi-body system dynamics. It avoidshandling multiplicity of solution, such as cases of no solution, multi-solution brought about byfriction during traditional construction of non-penetration constraint based on rigid model. At thesame time, the realism of VE (virtual environment) is improved in process of simulation.Furthermore, the valid condition of rolling and sliding unilateral contact is constituted based onsingular perturbation and linear complementary theory. Finally, the compliant method is verified byan interaction between a multi-legged robot and VE.展开更多
A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscilla...A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.展开更多
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man...In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.展开更多
The motion of a magnetized axisymmetric spacecraft about its center of mass in a circular orbit is considered, taking the gravitational and magnetic effects of the central body into account. Equations of motion of the...The motion of a magnetized axisymmetric spacecraft about its center of mass in a circular orbit is considered, taking the gravitational and magnetic effects of the central body into account. Equations of motion of the reduced system are transformed to equations of plane motion of a charged particle under the action of electric and magnetic fields. Stationary motions of the system are determined and periodic motions near to them are constructed using the Lyapounoff theorem of the holomorphic integral.展开更多
A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerica...A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerical experiments by the method were performed for different initial stand-off distances of the drop to the wall, viscosity ratios, combined surface tension and buoyancy parameters and ambient flow parameters. Numerical results show that due to the action of ambient flow and buoyancy the drop is compressed and stretched respectively in axial and radial directions when time goes. When the ambient flow action is weaker than that of the buoyancy the drop raises and bends upward and the stress on the wall induced by drop motion decreases when time advances. When the ambient flow action is stronger than that of the buoyancy the drop descends and becomes flatter and flatter as time goes. In this case when the initial stand-off distance is large the stress on the wall increases as the drop evolutes but when the stand-off distance is small the stress on the wall decreases as a result of combined effects of ambient flow, buoyancy and the stronger wall action to the flow. The action of the stress on the wall induced by drop motion is restricted in an area near the symmetric axis, which increases when the initial stand-off distance increases. When the initial stand-off distance increases the stress induced by drop motion decreases substantially. The surface tension effects resist the deformation and smooth the profile of the drop surfaces. The drop viscosity will reduce the deformation and migration of the drop.展开更多
An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors...An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors and the constraints on states. The motion planning for determining control inputs to minimize the cost functional is formulated as a nonlinear optimal control problem. Using the control parametrization, one can transform the infinite dimensional optimal control problem to a finite dimensional one that is solved via the quasi-Newton methods for a feasible trajectory which satisfies the nonholonomic constraint. The optimal motion planning scheme was applied to a rigid spacecraft with two momentum wheels. The simulation results show the effectiveness of the proposed optimal motion planning scheme.展开更多
The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CN...The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted positive for ischemia or infarction were processed by non-rigid Registration followed by KLT filtering. SNR and CNR were measured in abnormal and normal myocardium in unfiltered and KLT filtered images following nonrigid registration to compensate for respiratory and other motions. Image artifacts introduced by filtering in registered and nonregistered images were evaluated by two observers. There was a statistically sig- nificant increase in both SNR and CNR between normal and abnormal myocardium with KLT filtering (mean SNR increased by 62.18% ± 21.05% and mean CNR increased by 58.84% ± 18.06%;p = 0.01). Motion correction prior to KLT filtering reduced significantly the occurrence of filter induced artifacts (KLT only-artifacts in 42 out of 55 image series vs. registered plus KLT-artifacts in 3 out of 55 image series). In conclusion the combination of non-rigid registration and KLT filtering was shown to increase the SNR and CNR of GRE-EPI perfusion images. Subjective evaluation of image artifacts revealed that prior motion compensation significantly reduced the artifacts introduced by the KLT filtering process.展开更多
A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an a...A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an additional integral equality is obtained. By adding both sides of this integral equality to both sides of the conventional CVBIE, the amended boundary integral equation (BIE) is obtained. The method based on the discretization of the amended BIE is called the amended influence matrix method. With this method, for the Neumann boundary value problem (BVP) of an interior region, a unique solution for the displacement can be obtained. Several numerical examples are provided to prove the efficiency of the suggested method.展开更多
In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a R...In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a Riemannian manifold with boundary;globally.under the assumption of energy conservation, the system behaves like a billiards system over a Riemannina manifold with boundary展开更多
Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles...Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.展开更多
Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-D...Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.展开更多
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equ...The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.展开更多
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-u...In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.展开更多
Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for nume...Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid-structure interaction is noticeable and should be considered for non-rigid airships. Flow- induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximatelv 60% compared with that of the rigid model under a high angle of attack.展开更多
Let M(2)be the group of rigid motions of the plane.The Fourier transform and the Piancherel formula on M(2)can be explicitly given by the general group representation theory.Using this fact.we establish a kind of unce...Let M(2)be the group of rigid motions of the plane.The Fourier transform and the Piancherel formula on M(2)can be explicitly given by the general group representation theory.Using this fact.we establish a kind of uncertainty principle on M(2).The result can easily be generalized to higher dimensional cases.An application of the result yields an uncertainty principle on the Euclidean spaces obtained by R.S.Strichartz.展开更多
Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation oft...Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation ofthe rigid objects(no deformation)in the Newtonian fluid of the simple deformation field has been widely applied by geologists to the study of fabrics in rocks.The theory展开更多
基金the National Natural Science Foundation of China(Nos.10672040 and 10372022)the Natural Science Foundation of Fujian Province,China(No.E0410008)
文摘The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynamic equation and the Jacobian relation of a free-floating space rigid manipulator are established and then inverted to the state equation for control design. Based on the terminal sliding mode control (SMC) technique, a mathematical expression of the terminal sliding surface is proposed. The terminal SMC scheme is then developed for coordinated motion between the base's attitude and the end-effector of the free-floating space manipulator with external disturbance. This proposed control scheme not only guarantees the existence of the sliding phase of the closed-loop system, but also ensures that the output tracking error converges to zero in finite time. In addition, because the initial system state is always at the terminal sliding surface, the control scheme can eliminate reaching phase of the SMC and guarantee global robustness and stability of the closed-loop system. A planar free-floating space rigid manipulator is simulated to verify the feasibility of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(No.11072038)the Municipal Key Programs of Natural Science Foundation of Beijing(No.KZ201110772039)
文摘An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.
基金financially supported by the National Natural Science Foundation of China (No.51274192)Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering Open Foundation of China (No.JSKL2014K12)Jiangsu Ordinary University Graduate Students Research and Innovation Project of China (No.KYLX-1392)
文摘This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the disturbance degree theory, as well as the spring-element model, by setting the rotation angle of the wall as the disturbance parameter, we establish both a depth distribution function for sand and a nonlinear depth distribution calculation method for the non-limit passive soil pressure on a rigid retaining wall under the RT model, which is then compared with experiment. The results suggest that under the RT model: the non-limit soil pressure has a nonlinear distribution; the backfill disturbance degree and the lateral soil pressure increase with an increase in the wall rotation angle; and, the points where the resultant lateral soil pressure acts on the retaining wall are less than 2/3 of the height of the wall. The soil pressure predicted by the theoretical calculation put forward in this paper are quite similar to those obtained by the model experiment, which verifies the theoretical value, and the engineering guidance provided by the calculations are of significance.
基金This project is supported by National Natural Science Foundation of China (No.60375020, No.50305033, No.50405037)973 Program of China (N0.2002CB312106, No.2004CB719400)863 Program of China (No.2003-AA413310)Special Research Foundation of Ministry of Education for PhD Project in Colleges, China (No.20020335112).
文摘A unilateral non-penetration constraint dynamical simulation model withfriction is constructed based on compliant model for mechanical system VP (virtual prototyping)simulation. This model combines computer graphics with multi-body system dynamics. It avoidshandling multiplicity of solution, such as cases of no solution, multi-solution brought about byfriction during traditional construction of non-penetration constraint based on rigid model. At thesame time, the realism of VE (virtual environment) is improved in process of simulation.Furthermore, the valid condition of rolling and sliding unilateral contact is constituted based onsingular perturbation and linear complementary theory. Finally, the compliant method is verified byan interaction between a multi-legged robot and VE.
基金supported by the National Natural Science Foundation of China(Grant No.51679138)the 1000 Young Talent Program(Grant No.15Z127060020)the National Basic Research Program of China(973 Program,Grant Nos.2015CB251203 and 2013CB036103)
文摘A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.
基金sponsored by Bureau Veritas under the administration of Dr.ime Malenica
文摘In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.
文摘The motion of a magnetized axisymmetric spacecraft about its center of mass in a circular orbit is considered, taking the gravitational and magnetic effects of the central body into account. Equations of motion of the reduced system are transformed to equations of plane motion of a charged particle under the action of electric and magnetic fields. Stationary motions of the system are determined and periodic motions near to them are constructed using the Lyapounoff theorem of the holomorphic integral.
基金Project supported by the National Natural Science Foundation of China (No. 10272032)
文摘A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerical experiments by the method were performed for different initial stand-off distances of the drop to the wall, viscosity ratios, combined surface tension and buoyancy parameters and ambient flow parameters. Numerical results show that due to the action of ambient flow and buoyancy the drop is compressed and stretched respectively in axial and radial directions when time goes. When the ambient flow action is weaker than that of the buoyancy the drop raises and bends upward and the stress on the wall induced by drop motion decreases when time advances. When the ambient flow action is stronger than that of the buoyancy the drop descends and becomes flatter and flatter as time goes. In this case when the initial stand-off distance is large the stress on the wall increases as the drop evolutes but when the stand-off distance is small the stress on the wall decreases as a result of combined effects of ambient flow, buoyancy and the stronger wall action to the flow. The action of the stress on the wall induced by drop motion is restricted in an area near the symmetric axis, which increases when the initial stand-off distance increases. When the initial stand-off distance increases the stress induced by drop motion decreases substantially. The surface tension effects resist the deformation and smooth the profile of the drop surfaces. The drop viscosity will reduce the deformation and migration of the drop.
基金Project supported by the National Natural Science Foundation of China (No. 10372014).
文摘An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors and the constraints on states. The motion planning for determining control inputs to minimize the cost functional is formulated as a nonlinear optimal control problem. Using the control parametrization, one can transform the infinite dimensional optimal control problem to a finite dimensional one that is solved via the quasi-Newton methods for a feasible trajectory which satisfies the nonholonomic constraint. The optimal motion planning scheme was applied to a rigid spacecraft with two momentum wheels. The simulation results show the effectiveness of the proposed optimal motion planning scheme.
文摘The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted positive for ischemia or infarction were processed by non-rigid Registration followed by KLT filtering. SNR and CNR were measured in abnormal and normal myocardium in unfiltered and KLT filtered images following nonrigid registration to compensate for respiratory and other motions. Image artifacts introduced by filtering in registered and nonregistered images were evaluated by two observers. There was a statistically sig- nificant increase in both SNR and CNR between normal and abnormal myocardium with KLT filtering (mean SNR increased by 62.18% ± 21.05% and mean CNR increased by 58.84% ± 18.06%;p = 0.01). Motion correction prior to KLT filtering reduced significantly the occurrence of filter induced artifacts (KLT only-artifacts in 42 out of 55 image series vs. registered plus KLT-artifacts in 3 out of 55 image series). In conclusion the combination of non-rigid registration and KLT filtering was shown to increase the SNR and CNR of GRE-EPI perfusion images. Subjective evaluation of image artifacts revealed that prior motion compensation significantly reduced the artifacts introduced by the KLT filtering process.
文摘A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an additional integral equality is obtained. By adding both sides of this integral equality to both sides of the conventional CVBIE, the amended boundary integral equation (BIE) is obtained. The method based on the discretization of the amended BIE is called the amended influence matrix method. With this method, for the Neumann boundary value problem (BVP) of an interior region, a unique solution for the displacement can be obtained. Several numerical examples are provided to prove the efficiency of the suggested method.
文摘In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a Riemannian manifold with boundary;globally.under the assumption of energy conservation, the system behaves like a billiards system over a Riemannina manifold with boundary
基金Projects(50674018, 50474055) supported by the National Natural Science Foundation of China
文摘Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.
基金Supported by National Natural Science Foundation of China (No.50905061)the Fundamental Research Funds for Central Universities
文摘Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032)
文摘The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
文摘In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.
基金the National Natural Science Foundation of China (11202215 and 11332011)the Youth Innovation Promotion Association of CAS (2015015)
文摘Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid-structure interaction is noticeable and should be considered for non-rigid airships. Flow- induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximatelv 60% compared with that of the rigid model under a high angle of attack.
文摘Let M(2)be the group of rigid motions of the plane.The Fourier transform and the Piancherel formula on M(2)can be explicitly given by the general group representation theory.Using this fact.we establish a kind of uncertainty principle on M(2).The result can easily be generalized to higher dimensional cases.An application of the result yields an uncertainty principle on the Euclidean spaces obtained by R.S.Strichartz.
文摘Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation ofthe rigid objects(no deformation)in the Newtonian fluid of the simple deformation field has been widely applied by geologists to the study of fabrics in rocks.The theory