We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consid...We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.展开更多
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne...Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.展开更多
The effect of non-uniform basic concentration gradient on the onset of double diffusive convection in a micropolar fluid layer heated and saluted from below and cooled from above has been studied. The linear stability...The effect of non-uniform basic concentration gradient on the onset of double diffusive convection in a micropolar fluid layer heated and saluted from below and cooled from above has been studied. The linear stability analysis is performed. The eigen value of the problem is obtained using Galerkian method. The eigen values are obtained for 1) free-free 2) rigid-free 3) rigid-rigid velocity boundary combination with isothermal temperature condition on spin-vanishing permeable boundaries. The influence of various micropolar parameters on the onset of convection has been analyzed. One linear and five non linear concentration profiles are considered and their comparative influence on onset is discussed and results are depicted graphically. It is observed that fluid layer with suspended particles heated and soluted from below is more stable compare to the classical fluid without suspended particles.展开更多
This work consider boundary integrability of the weak solutions of a non-Newtonian compressible fluids in a bounded domain in dimension three, which has the constitutive equartions as ■The existence result of weak so...This work consider boundary integrability of the weak solutions of a non-Newtonian compressible fluids in a bounded domain in dimension three, which has the constitutive equartions as ■The existence result of weak solutions can be get based on Galerkin approximation. With the linear operator B constructed by BOGOVSKII, we show that the density ■is square integrable up to the boundary.展开更多
This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing an...This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.展开更多
In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data s...In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data satisfies a natural compatibility condition. For the results, the initial density does not need to be bounded below away from zero.展开更多
This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of e...This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.展开更多
This paper investigates the large-time behavior of solutions to an outflow problem for a compressible non-Newtonian fluid in a half space. The main concern is to analyze the phenomena that happens when the compressibl...This paper investigates the large-time behavior of solutions to an outflow problem for a compressible non-Newtonian fluid in a half space. The main concern is to analyze the phenomena that happens when the compressible non-Newtonian fluid blows out through the boundary. Based on the existence of the stationary solution, it is proved that there exists a boundary layer(i.e., the stationary solution) to the outflow problem and the boundary layer is nonlinearly stable under small initial perturbation.展开更多
The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstr...The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstructed from CT-scan images is simulated, which incorporates the fluid-structure interaction (FSI). In addition to the investigation of the RAS effects on the wall shear stress and the displacement of the vessel wall, it is determined that the RAS leads to decrease in the renal mass flow. This may cause the activation of the renin-angiotension system and results in severe hypertension.展开更多
This paper studies the trajectory asymptotic behavior of a non-autonomous in- compressible non-Newtonian fluid in 3D bounded domains. In appropriate topologies, the authors prove the existence of the uniform trajector...This paper studies the trajectory asymptotic behavior of a non-autonomous in- compressible non-Newtonian fluid in 3D bounded domains. In appropriate topologies, the authors prove the existence of the uniform trajectory attractor for the translation semigroup acting on the united trajectory space.展开更多
The effect of chemical reaction on free convection heat and mass transfer for a non-Newtonian power law fluid over a vertical flat plate embedded in a fluid-saturated porous medium has been studied in the presence of ...The effect of chemical reaction on free convection heat and mass transfer for a non-Newtonian power law fluid over a vertical flat plate embedded in a fluid-saturated porous medium has been studied in the presence of the yield stress and the Soret effect. The governing boundary layer equations and boundary conditions are cast into a dimen- sionless form by similarity transformations, and the resulting system of equations is solved by a finite difference method. The results are preSented and discussed for concentration profiles, as well as the Nusselt number and the Sherwood number for various values of the parameters, which govern the problem. The results obtained show that the flow field is influenced appreciably by the presence of the chemical reaction parameter γ the order of.the chemical reaction parameter m, the Soret number St, the buoyancy ratio N, the Lewis number Le, and the dimensionless rheological parameter Ω.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
Characteristics of transonic flow over an airfoil are determined by a shock wave standing on the suction surface. In this case, the shock wave/boundary layer interaction becomes complex because an adverse pressure gra...Characteristics of transonic flow over an airfoil are determined by a shock wave standing on the suction surface. In this case, the shock wave/boundary layer interaction becomes complex because an adverse pressure gradient is imposed by the shock wave on the boundary layer. Several types of passive control techniques have been applied to shock wave/boundary layer interaction in the transonic flow. Furthermore, possibilities for the control of flow fields due to non-equilibrium condensation have been shown so far and in this flow field, non-equilibrium condensation occurs across the passage of the nozzle and it causes the total pressure loss in the flow field. However, local occurrence of non-equilibrium condensation in the flow field may change the characteristics of total pressure loss compared with that by non-equilibrium condensation across the passage of flow field and there are few for researches of locally occurred non-equilibrium condensation in a transonic flow field. The purpose of this study is to clarify the effect of locally occurred non-equilibrium condensation on the shock strength and total pressure loss on a transonic internal flow field with circular bump. As a result, it was found that shock strength in case with local occurrence of non-equilibrium condensation is reduced compared with that of no condensation. Further, the amount of increase in the total pressure loss in case with local occurrence of non-equilibrium condensation was also reduced compared with that by non-equilibrium condensation across the passage of flow field.展开更多
A combination of the computational symbolic calculation, mathematical approach and physico-mechanical model lends to a computational intellectual analytical approach developed by the author. There is a principal diffe...A combination of the computational symbolic calculation, mathematical approach and physico-mechanical model lends to a computational intellectual analytical approach developed by the author. There is a principal difference between the computer proof and the computer derivation completed by the computer, also difference between the numerical and symbolic calculations. In this investigation the computational analytical approach is extended, and an unsteady flow of non-Newtonian fluid in the gap between two rotating coaxial cylinders is studied. The Oldroyd fluid B model is used by which the Weissenberg effects are explained in a good comparison with the experiments. The governing equations are reduced to a partial differential equation of 3 rd order for the dimensionless velocity. Using the computer software Macsyma and an improved variational approach the problem with the initial and boundary conditions is then reduced to a problem of an ordinary differential equation for different approximations. The analytical solutions are given for the 1 st, 2 nd and 3 rd approximations. The present investigation shows the ability of the computational symbolic manipulation in solving the problems of non-Newtonian fluid flows. There is a possibility of that to solve the problems in mathematics and mechanics. An important conclusion can be drawn from the results that the transition from a steady state to another steady state is non-unique.展开更多
The pressureless Navier-Stokes equations for non-Newtonian fluid are studied. The analytical solutions with arbitrary time blowup, in radial symmetry, are constructed in this paper. With the previous results for the a...The pressureless Navier-Stokes equations for non-Newtonian fluid are studied. The analytical solutions with arbitrary time blowup, in radial symmetry, are constructed in this paper. With the previous results for the analytical blowup solutions of the N-dimensional (N ≥ 2) Navier-Stokes equations, we extend the similar structure to construct an analytical family of solutions for the pressureless Navier-Stokes equations with a normal viscosity term (μ(ρ)| u|^α u).展开更多
The study of wave propagation in finite/infinite media has many applications in geotechnical and structural earthquake engineering and has been a focus of research for the past few decades. This paper presents an anal...The study of wave propagation in finite/infinite media has many applications in geotechnical and structural earthquake engineering and has been a focus of research for the past few decades. This paper presents an analysis of 2D anti- plane problems (Love waves) and 2D in-plane problems (Rayleigh waves) in the frequency domain in media consisting of a near-field irregular and a far-field regular part. The near field part may contain structures and its boundaries with the far-field can be of any shape. In this study, the irregular boundaries of the near-field are treated as consistent boundaries, extending the concept of Lysmer's vertical consistent boundaries. The presented technique is called the Condensed Hyperelements Method (CHM). In this method, the irregular boundary is limited to a vertical boundary at each end that is a consistent boundary at the far-field side. Between the two ends, the medium is discretized with hyperelements. Using static condensation, the stiffness matrix of the far-field is derived for the nodes on the irregular boundary. Examples of the application of the CHM illustrate its excellent accuracy and efficiency.展开更多
Numerical simulations have been carried out for a supersonic three-dimensional rectangular arc nozzle, where a secondary flow toward the center of the curvature occurs due to the shape of the nozzle. It is known that ...Numerical simulations have been carried out for a supersonic three-dimensional rectangular arc nozzle, where a secondary flow toward the center of the curvature occurs due to the shape of the nozzle. It is known that secondary flow causes longitudinal vortices to form near the wall of the nozzle corner, making the nozzle outlet flow unstable and induces loss of transport energy. When the working fluid is a condensable gas with relatively large latent heat such as moist air or steam, rapid accelerated expansion in the nozzle causes non-equilibrium condensation due to supersaturation. After the release of latent heat during phase transition, nozzle flow continues expanding at an equilibrium saturation condition. In the absence of foreign particles, e.g. ions or dust particles, condensation nuclei are formed in the gas itself causing non-equilibrium homogeneous condensation. Supersonic nozzle flow properties vary considerably due to the occurrence of condensation phenomenon. The objective of this study is to investigate the effect of non-equilibrium homogeneous condensation on the longitudinal vortices which form in the range close to the corner of rectangular arc nozzle numerically.展开更多
There are complex and perfect coagulation, anticoagulation and fibrinolysis systems in the human body and their fine regulatory mechanisms. Once the coagulation system and its regulatory mechanisms are destroyed, blee...There are complex and perfect coagulation, anticoagulation and fibrinolysis systems in the human body and their fine regulatory mechanisms. Once the coagulation system and its regulatory mechanisms are destroyed, bleeding or thrombosis will occur very soon. In the blood coagulation, the blood viscoelasticity changes. Therefore, the thrombus elasticity measurement technology can be used to continuously monitor the changing blood viscoelasticity in order to study the process of coagulation. The results of the interaction among the various components of the blood can be obtained from coagulation to fibrinolysis by bedside detection. The traditional electromagnetic induction sensors, based on conventional coil inductance, are manufactured complexly, high cost and non-linear. Therefore, this paper proposes a non-Newtonian fluid viscoelasticity measurement method based on the piezoelectric effect. We use the piezoelectric bimorphs with the diameter of 21 mm and the total thickness of 0.38 mm and DSM coupling probes with the length of 3 mm, 5 mm and 7 mm to design the piezoelectric bimorphs driver. The viscoelasticity of different non-Newtonian fluids is tested. The vibration amplitudes of the piezoelectric bimorphs and liquid surfaces range from 0.43 μm to 3.52 μm. Consequently, the feasibility of in vitro detection of thrombus is confirmed in principle and the above scheme is validated theoretically and experimentally, which provides the basis for the measurement of blood viscoelasticity, the in vitro detection of thrombus and the manufacture of blood coagulation instrument.展开更多
The amino acids are necessarily nutritious components, their diffusions in body fluid and blood that be- long to typical non-Newtonian fluid are of virtual importance to control the diffusive process and help clinical...The amino acids are necessarily nutritious components, their diffusions in body fluid and blood that be- long to typical non-Newtonian fluid are of virtual importance to control the diffusive process and help clinical treatment. In this article, a holographic interferometer has been adopted to measure the diffusivity of amino acids in non-Newtonian fluid with the use of real-time holographic interference technique. In order to prove the reliability of the experimental instrument, the diffusivities of sucrose aqueous solution at 298.15K were determined. The meas- ured result displays a satisfactory accuracy of the apparatus used. Furthermore, the diffusion coefficients of glynine, L-serine, L-threonine and L-valine in polyacrylamide (PAM) aqueous solution at 298.15K were measured, respec- tively. The experimental data were fitted by a newly proposed correlation equation based on Li’s predictive model. The calculating results by the present model are at considerably good agreement with experimental values, and the maximum average deviation is only 0.5%.展开更多
This paper utilizes numerical analysis method to determine the influence of non-condensation gas on the thermal performance of a heat pipe. The temperature difference between the evaporation and condensation sections ...This paper utilizes numerical analysis method to determine the influence of non-condensation gas on the thermal performance of a heat pipe. The temperature difference between the evaporation and condensation sections of a single heat pipe and maximum heat capacity are the index of the thermal performance of a heat pipe for a thermal module manufacturer. The thermal performance of a heat pipe with lower temperature difference between the evaporation and condensation sections is better than that of higher temperature dif- ference at the same input power. The results show that the maximum heat capacity reaches the highest point, as the amount of the non-condensation gas of a heat pipe is the lowest value and the temperature difference between evaporation and condensation sections is the smallest one. The temperature difference is under 1?C while the percentage of the non-condensation gas is under 8 × 10?5%, and the heat pipe has the maximum heat capacity.展开更多
文摘We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.
基金Project“973",a national fundamental research development program
文摘Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.
文摘The effect of non-uniform basic concentration gradient on the onset of double diffusive convection in a micropolar fluid layer heated and saluted from below and cooled from above has been studied. The linear stability analysis is performed. The eigen value of the problem is obtained using Galerkian method. The eigen values are obtained for 1) free-free 2) rigid-free 3) rigid-rigid velocity boundary combination with isothermal temperature condition on spin-vanishing permeable boundaries. The influence of various micropolar parameters on the onset of convection has been analyzed. One linear and five non linear concentration profiles are considered and their comparative influence on onset is discussed and results are depicted graphically. It is observed that fluid layer with suspended particles heated and soluted from below is more stable compare to the classical fluid without suspended particles.
基金supported by the National Natural Science Foundation of China(11271305,11531010)
文摘This work consider boundary integrability of the weak solutions of a non-Newtonian compressible fluids in a bounded domain in dimension three, which has the constitutive equartions as ■The existence result of weak solutions can be get based on Galerkin approximation. With the linear operator B constructed by BOGOVSKII, we show that the density ■is square integrable up to the boundary.
基金Sponsored by the National NSF (10901121, 10826091,10771074, and 10771139)NSF for Postdoctors in China (20090460952)+3 种基金NSF of Zhejiang Province (Y6080077)NSF of Guangdong Province (004020077)NSF of Wenzhou University (2008YYLQ01)Zhejiang youthteacher training project and Wenzhou 551 project
文摘This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.
基金Supported by NSFC(11201371,1331005)Natural Science Foundation of Shaanxi Province(2012JQ020)
文摘In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data satisfies a natural compatibility condition. For the results, the initial density does not need to be bounded below away from zero.
基金Sponsored by the NSFC (10901121,10826091 and 10771139)NSF for Postdoctors of China (20090460952)+2 种基金NSF of Zhejiang Province (Y6080077)NSF of Wenzhou University (2008YYLQ01)by the Zhejiang Youth Teacher Training Project and Wenzhou 551 Project
文摘This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.
基金supported by the National Natural Science Foundation of China(11501445)the third author was supported by the National Natural Science Foundation of China(11671319,11331005)
文摘This paper investigates the large-time behavior of solutions to an outflow problem for a compressible non-Newtonian fluid in a half space. The main concern is to analyze the phenomena that happens when the compressible non-Newtonian fluid blows out through the boundary. Based on the existence of the stationary solution, it is proved that there exists a boundary layer(i.e., the stationary solution) to the outflow problem and the boundary layer is nonlinearly stable under small initial perturbation.
文摘The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstructed from CT-scan images is simulated, which incorporates the fluid-structure interaction (FSI). In addition to the investigation of the RAS effects on the wall shear stress and the displacement of the vessel wall, it is determined that the RAS leads to decrease in the renal mass flow. This may cause the activation of the renin-angiotension system and results in severe hypertension.
基金Supported by NSFC(51209242,2011BAB09B01,11271290)NSF of Zhejiang Province(LY17A010011)
文摘This paper studies the trajectory asymptotic behavior of a non-autonomous in- compressible non-Newtonian fluid in 3D bounded domains. In appropriate topologies, the authors prove the existence of the uniform trajectory attractor for the translation semigroup acting on the united trajectory space.
文摘The effect of chemical reaction on free convection heat and mass transfer for a non-Newtonian power law fluid over a vertical flat plate embedded in a fluid-saturated porous medium has been studied in the presence of the yield stress and the Soret effect. The governing boundary layer equations and boundary conditions are cast into a dimen- sionless form by similarity transformations, and the resulting system of equations is solved by a finite difference method. The results are preSented and discussed for concentration profiles, as well as the Nusselt number and the Sherwood number for various values of the parameters, which govern the problem. The results obtained show that the flow field is influenced appreciably by the presence of the chemical reaction parameter γ the order of.the chemical reaction parameter m, the Soret number St, the buoyancy ratio N, the Lewis number Le, and the dimensionless rheological parameter Ω.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
文摘Characteristics of transonic flow over an airfoil are determined by a shock wave standing on the suction surface. In this case, the shock wave/boundary layer interaction becomes complex because an adverse pressure gradient is imposed by the shock wave on the boundary layer. Several types of passive control techniques have been applied to shock wave/boundary layer interaction in the transonic flow. Furthermore, possibilities for the control of flow fields due to non-equilibrium condensation have been shown so far and in this flow field, non-equilibrium condensation occurs across the passage of the nozzle and it causes the total pressure loss in the flow field. However, local occurrence of non-equilibrium condensation in the flow field may change the characteristics of total pressure loss compared with that by non-equilibrium condensation across the passage of flow field and there are few for researches of locally occurred non-equilibrium condensation in a transonic flow field. The purpose of this study is to clarify the effect of locally occurred non-equilibrium condensation on the shock strength and total pressure loss on a transonic internal flow field with circular bump. As a result, it was found that shock strength in case with local occurrence of non-equilibrium condensation is reduced compared with that of no condensation. Further, the amount of increase in the total pressure loss in case with local occurrence of non-equilibrium condensation was also reduced compared with that by non-equilibrium condensation across the passage of flow field.
文摘A combination of the computational symbolic calculation, mathematical approach and physico-mechanical model lends to a computational intellectual analytical approach developed by the author. There is a principal difference between the computer proof and the computer derivation completed by the computer, also difference between the numerical and symbolic calculations. In this investigation the computational analytical approach is extended, and an unsteady flow of non-Newtonian fluid in the gap between two rotating coaxial cylinders is studied. The Oldroyd fluid B model is used by which the Weissenberg effects are explained in a good comparison with the experiments. The governing equations are reduced to a partial differential equation of 3 rd order for the dimensionless velocity. Using the computer software Macsyma and an improved variational approach the problem with the initial and boundary conditions is then reduced to a problem of an ordinary differential equation for different approximations. The analytical solutions are given for the 1 st, 2 nd and 3 rd approximations. The present investigation shows the ability of the computational symbolic manipulation in solving the problems of non-Newtonian fluid flows. There is a possibility of that to solve the problems in mathematics and mechanics. An important conclusion can be drawn from the results that the transition from a steady state to another steady state is non-unique.
基金Supported by the NSFC of China (1087117510931007+1 种基金10901137)supported by the Scientific Research Fund of Education Department of Zhejiang Province (Y200803203)
文摘The pressureless Navier-Stokes equations for non-Newtonian fluid are studied. The analytical solutions with arbitrary time blowup, in radial symmetry, are constructed in this paper. With the previous results for the analytical blowup solutions of the N-dimensional (N ≥ 2) Navier-Stokes equations, we extend the similar structure to construct an analytical family of solutions for the pressureless Navier-Stokes equations with a normal viscosity term (μ(ρ)| u|^α u).
文摘The study of wave propagation in finite/infinite media has many applications in geotechnical and structural earthquake engineering and has been a focus of research for the past few decades. This paper presents an analysis of 2D anti- plane problems (Love waves) and 2D in-plane problems (Rayleigh waves) in the frequency domain in media consisting of a near-field irregular and a far-field regular part. The near field part may contain structures and its boundaries with the far-field can be of any shape. In this study, the irregular boundaries of the near-field are treated as consistent boundaries, extending the concept of Lysmer's vertical consistent boundaries. The presented technique is called the Condensed Hyperelements Method (CHM). In this method, the irregular boundary is limited to a vertical boundary at each end that is a consistent boundary at the far-field side. Between the two ends, the medium is discretized with hyperelements. Using static condensation, the stiffness matrix of the far-field is derived for the nodes on the irregular boundary. Examples of the application of the CHM illustrate its excellent accuracy and efficiency.
文摘Numerical simulations have been carried out for a supersonic three-dimensional rectangular arc nozzle, where a secondary flow toward the center of the curvature occurs due to the shape of the nozzle. It is known that secondary flow causes longitudinal vortices to form near the wall of the nozzle corner, making the nozzle outlet flow unstable and induces loss of transport energy. When the working fluid is a condensable gas with relatively large latent heat such as moist air or steam, rapid accelerated expansion in the nozzle causes non-equilibrium condensation due to supersaturation. After the release of latent heat during phase transition, nozzle flow continues expanding at an equilibrium saturation condition. In the absence of foreign particles, e.g. ions or dust particles, condensation nuclei are formed in the gas itself causing non-equilibrium homogeneous condensation. Supersonic nozzle flow properties vary considerably due to the occurrence of condensation phenomenon. The objective of this study is to investigate the effect of non-equilibrium homogeneous condensation on the longitudinal vortices which form in the range close to the corner of rectangular arc nozzle numerically.
文摘There are complex and perfect coagulation, anticoagulation and fibrinolysis systems in the human body and their fine regulatory mechanisms. Once the coagulation system and its regulatory mechanisms are destroyed, bleeding or thrombosis will occur very soon. In the blood coagulation, the blood viscoelasticity changes. Therefore, the thrombus elasticity measurement technology can be used to continuously monitor the changing blood viscoelasticity in order to study the process of coagulation. The results of the interaction among the various components of the blood can be obtained from coagulation to fibrinolysis by bedside detection. The traditional electromagnetic induction sensors, based on conventional coil inductance, are manufactured complexly, high cost and non-linear. Therefore, this paper proposes a non-Newtonian fluid viscoelasticity measurement method based on the piezoelectric effect. We use the piezoelectric bimorphs with the diameter of 21 mm and the total thickness of 0.38 mm and DSM coupling probes with the length of 3 mm, 5 mm and 7 mm to design the piezoelectric bimorphs driver. The viscoelasticity of different non-Newtonian fluids is tested. The vibration amplitudes of the piezoelectric bimorphs and liquid surfaces range from 0.43 μm to 3.52 μm. Consequently, the feasibility of in vitro detection of thrombus is confirmed in principle and the above scheme is validated theoretically and experimentally, which provides the basis for the measurement of blood viscoelasticity, the in vitro detection of thrombus and the manufacture of blood coagulation instrument.
基金Supported by the National Natural Science Foundation of China (No.20476073).
文摘The amino acids are necessarily nutritious components, their diffusions in body fluid and blood that be- long to typical non-Newtonian fluid are of virtual importance to control the diffusive process and help clinical treatment. In this article, a holographic interferometer has been adopted to measure the diffusivity of amino acids in non-Newtonian fluid with the use of real-time holographic interference technique. In order to prove the reliability of the experimental instrument, the diffusivities of sucrose aqueous solution at 298.15K were determined. The meas- ured result displays a satisfactory accuracy of the apparatus used. Furthermore, the diffusion coefficients of glynine, L-serine, L-threonine and L-valine in polyacrylamide (PAM) aqueous solution at 298.15K were measured, respec- tively. The experimental data were fitted by a newly proposed correlation equation based on Li’s predictive model. The calculating results by the present model are at considerably good agreement with experimental values, and the maximum average deviation is only 0.5%.
文摘This paper utilizes numerical analysis method to determine the influence of non-condensation gas on the thermal performance of a heat pipe. The temperature difference between the evaporation and condensation sections of a single heat pipe and maximum heat capacity are the index of the thermal performance of a heat pipe for a thermal module manufacturer. The thermal performance of a heat pipe with lower temperature difference between the evaporation and condensation sections is better than that of higher temperature dif- ference at the same input power. The results show that the maximum heat capacity reaches the highest point, as the amount of the non-condensation gas of a heat pipe is the lowest value and the temperature difference between evaporation and condensation sections is the smallest one. The temperature difference is under 1?C while the percentage of the non-condensation gas is under 8 × 10?5%, and the heat pipe has the maximum heat capacity.