期刊文献+
共找到4,688篇文章
< 1 2 235 >
每页显示 20 50 100
Integrating Multiple Linear Regression and Infectious Disease Models for Predicting Information Dissemination in Social Networks
1
作者 Junchao Dong Tinghui Huang +1 位作者 Liang Min Wenyan Wang 《Journal of Electronic Research and Application》 2023年第2期20-27,共8页
Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model int... Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends. 展开更多
关键词 Social networks Epidemic model linear regression model
下载PDF
A LARGE SAMPLE ESTIMATE IN MEDIAN LINEAR REGRESSION MODEL Ⅰ: NONTRUNCATED CASE 被引量:1
2
作者 陈希孺 《Acta Mathematica Scientia》 SCIE CSCD 1990年第4期412-421,共10页
This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation an... This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates. 展开更多
关键词 A LARGE SAMPLE ESTIMATE IN MEDIAN linear regression model nonTRUNCATED CASE
下载PDF
Responses of River Runoff to Climate Change Based on Nonlinear Mixed Regression Model in Chaohe River Basin of Hebei Province, China
3
作者 JIANG Yan LIU Changming +2 位作者 ZHENG Hongxing LI Xuyong WU Xianing 《Chinese Geographical Science》 SCIE CSCD 2010年第2期152-158,共7页
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature ... Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well. 展开更多
关键词 river runoff runoff forecast nonlinear mixed regression model linear multi-regression model linear mixed regression model BP neural network
下载PDF
Regression analysis and its application to oil and gas exploration:A case study of hydrocarbon loss recovery and porosity prediction,China
4
作者 Yang Li Xiaoguang Li +3 位作者 Mingyu Guo Chang Chen Pengbo Ni Zijian Huang 《Energy Geoscience》 EI 2024年第4期240-252,共13页
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not... In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery. 展开更多
关键词 regression analysis Oil and gas exploration Multiple linear regression model nonlinear regression model Hydrocarbon loss recovery Porosity prediction
下载PDF
Selection of the Linear Regression Model According to the Parameter Estimation 被引量:31
5
作者 Sun Dao-de Department of Computer, Fuyang Teachers College, Anhui 236032,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期400-405,共6页
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula... In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example. 展开更多
关键词 parameter estimation linear regression model selection criterion mean square error
下载PDF
Combined model based on optimized multi-variable grey model and multiple linear regression 被引量:11
6
作者 Pingping Xiong Yaoguo Dang +1 位作者 Xianghua wu Xuemei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期615-620,共6页
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin... The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction. 展开更多
关键词 multi-variable grey model (MGM(1 m)) backgroundvalue OPTIMIZATION multiple linear regression combined predic-tion model.
下载PDF
EMPIRICAL BAYES ESTIMATION FOR ESTIMABLE FUNCTION OF REGRESSION COEFFICIENT IN A MULTIPLE LINEAR REGRESSION MODEL 被引量:1
7
作者 韦来生 《Acta Mathematica Scientia》 SCIE CSCD 1996年第S1期22-33,共12页
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n... In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y. 展开更多
关键词 linear regression model estimable function empirical Bayes estimation convergence rates
下载PDF
Double-Penalized Quantile Regression in Partially Linear Models 被引量:1
8
作者 Yunlu Jiang 《Open Journal of Statistics》 2015年第2期158-164,共7页
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus... In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset. 展开更多
关键词 QUANTILE regression PARTIALLY linear model Heavy-Tailed DISTRIBUTION
下载PDF
Statistical Analysis of Fuzzy Linear Regression Model Based on Centroid Method 被引量:1
9
作者 Aiwu Zhang 《Applied Mathematics》 2016年第7期579-586,共8页
This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s in... This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better. 展开更多
关键词 Centroid Method Fuzzy linear regression model Parameter Estimation Data Deletion model Cook Distance
下载PDF
Dverview and Main Advances in Permutation Tests for Linear Regression Models 被引量:1
10
作者 Massimiliano Giacalone Angela Alibrandi 《Journal of Mathematics and System Science》 2015年第2期53-59,共7页
When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the ... When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the normal model is the permutation or randomization model. The permutation model is nonparametric because no formal assumptions are made about the population parameters of the reference distribution, i.e., the distribution to which an obtained result is compared to determine its probability when the null hypothesis is true. Typically the reference distribution is a sampling distribution for parametric tests and a permutation distribution for many nonparametric tests. Within the regression models, it is possible to use the permutation tests, considering their ownerships of optimality, especially in the multivariate context and the normal distribution of the response variables is not guaranteed. In the literature there are numerous permutation tests applicable to the estimation of the regression models. The purpose of this study is to examine different kinds of permutation tests applied to linear models, focused our attention on the specific test statistic on which they are based. In this paper we focused our attention on permutation test of the independent variables, proposed by Oja, and other methods to effect the inference in non parametric way, in a regression model. Moreover, we show the recent advances in this context and try to compare them. 展开更多
关键词 Permutation Tests linear regression models non Parametric Approach.
下载PDF
Application of Grey System GM (1,1) model and unary linear regression model in coal consumption of Jilin Province 被引量:1
11
作者 TIAN Songlin LU Laijun 《Global Geology》 2015年第1期26-31,共6页
The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption... The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model. 展开更多
关键词 Grey System GM 1 1 model unary linear regression model model test PREDICTION coal con-sumption Jilin Province
下载PDF
A linear regression model (LRM) for groundwater chemistry in and around the Vaniyambadi industrial area, Tamil Nadu, India 被引量:1
12
作者 Sajil Kumar P.J. Davis Delson P. +1 位作者 Vernon J.G. James E.J. 《Chinese Journal Of Geochemistry》 EI CAS CSCD 2013年第1期19-26,共8页
A linear regression model in conjunction with cluster analysis was applied to the groundwater quality parameters for the Vaniyambadi industrial area, Tamil Nadu, India. These physico-chemical parameters were collected... A linear regression model in conjunction with cluster analysis was applied to the groundwater quality parameters for the Vaniyambadi industrial area, Tamil Nadu, India. These physico-chemical parameters were collected from 25 wells by intensive groundwater sampling conducted during January 2010. All the major ions, pH and electrical conductivity were analyzed. The abundances of cations were in the order of Na <Ca <Mg <K and those of anions were in the order of Cl <HCO3 <SO4 <CO3, respectively. This was in agreement with the water types, Na-Cl and Na-Ca-HCO3, determined by the Piper plot. High concentrations of the ions Na, Cl and SO4 were recorded near the tanneries that operate within the study area. While the elevated concentrations of HCO3 and F were observed away from the tanneries. This peculiar hydrochemical behaviour suggests that the chemistry of water is predominantly influenced by tannery effluents and weathering of silicate minerals. Results of the linear regression model yielded 11 regression equations for the 5 most correlated parameters. A dendrogram from the cluster analysis showed 2 major clusters representing the influence of tanneries and geological formations in the study area, which confirmed the results of major ion chemistry. 展开更多
关键词 线性回归模型 地下水化学 工业区 印度 LRM 聚类分析 物理化学参数 研究区域
下载PDF
LIMITING BEHAVIOR OF RECURSIVE M-ESTIMATORS IN MULTIVARIATE LINEAR REGRESSION MODELS AND THEIR ASYMPTOTIC EFFICIENCIES
13
作者 缪柏其 吴月华 刘东海 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期319-329,共11页
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi... Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied. 展开更多
关键词 asymptotic efficiency asymptotic normality asymptotic relative efficiency least absolute deviation least squares M-ESTIMATION multivariate linear optimal estimator reeursive algorithm regression coefficients robust estimation regression model
下载PDF
PARAMETRIC TEST IN PARTIAL LINEAR REGRESSION MODELS
14
作者 高集体 《Acta Mathematica Scientia》 SCIE CSCD 1995年第S1期1-10,共10页
Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Mulle... Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates. 展开更多
关键词 Partial linear model Parametric test Asmpptotic normality nonperametric regression technique.
下载PDF
Parametric estimation for the simple linear regression model under moving extremes ranked set sampling design
15
作者 YAO Dong-sen CHEN Wang-xue LONG Chun-xian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第2期269-277,共9页
Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed... Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed by McIntyre[1952.A method for unbiased selective sampling,using ranked sets.Australian Journal of Agricultural Research 3,385-390]as an effective way to estimate the pasture mean.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling(MERSS)is considered for the best linear unbiased estimators(BLUEs)for the simple linear regression model.The BLUEs for this model under MERSS are derived.The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling. 展开更多
关键词 simple linear regression model best linear unbiased estimator simple random sampling ranked set sampling moving extremes ranked set sampling
下载PDF
Empirical Likelihood Diagnosis of Modal Linear Regression Models
16
作者 Shuling Wang Lin Zheng Jiangtao Dai 《Journal of Applied Mathematics and Physics》 2014年第10期948-952,共5页
In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is... In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is introduced. First, the estimation equation based on empirical likelihood method is established. Then, some diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation study. 展开更多
关键词 MODAL linear regression model Empirical LIKELIHOOD OUTLIERS Influence Analysis
下载PDF
A Universal Selection Method in Linear Regression Models
17
作者 Eckhard Liebscher 《Open Journal of Statistics》 2012年第2期153-162,共10页
In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subj... In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subjective grading of the model complexity can be incorporated. We provide bounds for the mis-selection error. Simulations show that by using the proposed selection rule, the mis-selection error can be controlled uniformly. 展开更多
关键词 linear regression model SELECTION MULTIPLE TESTS
下载PDF
Estimators of Linear Regression Model and Prediction under Some Assumptions Violation
18
作者 Kayode Ayinde Emmanuel O. Apata Oluwayemisi O. Alaba 《Open Journal of Statistics》 2012年第5期534-546,共13页
The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This not... The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49). 展开更多
关键词 PREDICTION ESTIMATORS linear regression model Autocorrelated Error TERMS CORRELATED Stochastic NORMAL regressors
下载PDF
On Diagnostics in Stochastic Restricted Linear Regression Models
19
作者 Shuling Wang Man Liu Xiaohong Deng 《Open Journal of Statistics》 2014年第9期757-764,共8页
The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the... The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the method and application of the diagnostic mostly. Firstly, review the estimators of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given to illustrate our results. 展开更多
关键词 STOCHASTIC RESTRICTED linear regression model STOCHASTIC RESTRICTED RIDGE ESTIMATOR STATISTICAL DIAGNOSTICS
下载PDF
Bayesian Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm
20
作者 Suparman Michel Doisy 《Computer Technology and Application》 2015年第1期14-18,共5页
Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studie... Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation ofpiecewise linear regression models. The method used to estimate the parameters ofpicewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC (Marcov Chain Monte Carlo) algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters ofpicewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models. 展开更多
关键词 Piecewise linear regression models hierarchical bayesian reversible jump MCMC.
下载PDF
上一页 1 2 235 下一页 到第
使用帮助 返回顶部