Because powders are mostly non-isometric during the sintering process, copper powders were chosen to study the effects of four material transport mechanisms, including surface diffusion, grain-boundary diffusion, volu...Because powders are mostly non-isometric during the sintering process, copper powders were chosen to study the effects of four material transport mechanisms, including surface diffusion, grain-boundary diffusion, volume diffusion, and multi-couplings. These material transport mechanisms were studied with respect to sintering neck growth of a non-isometric biosphere during initial sintering. The evolution of the neck growth in the four transport mechanisms was simulated by Visual C++ as well based on the model of different particles. The results show that the increase of the sintering temperature, both the grain-boundary diffusion and volume diffusion play primary roles in neck growth, while surface diffusion gradually becomes the secondary mechanism. Both the sintered neck and the shrinkage of the two centers increase with increasing temperature by means of the coupling diffusion mechanism. The radius of the sintering neck decreased, and the shrinkage rate of the two centers increased with an increase of the diameter ratio of the two spheres.展开更多
A pilot study was conducted to produce high performance green ceramsite by using sewage sludge, fly ash and silt. According to the theory of Riley, the proportions of raw materials were chosen to perform the sintering...A pilot study was conducted to produce high performance green ceramsite by using sewage sludge, fly ash and silt. According to the theory of Riley, the proportions of raw materials were chosen to perform the sintering experiments. Thereby, the optimum proportion of sludge, fly ash and silt and sintering parameters were determined. The microstructure of the optimized mixture and the leaching of heavy metal elements were also analyzed. The lab testing results show that sintering parameters have significant impact on the performance of ceramsite. For solid waste ceramsite with high loss of ignition, inadequate pre-burning process lowers the strength and increases the water absorption. Low water absorption can be achieved by the enameled surface and closed pore structure. The high performance green ceramsite has the density grade of 700, water absorption of 6% and compressive strength of 6.6 MPa. The ceramsite is mainly composed of cristobalite and mullite. The leaching of heavy metal elements from the solid waste ceramsite are lower than the limits required by the national standard. This study shows that the utilization of solid waste ceramsite as the light Weight aggregate is feasible and safe.展开更多
Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge b...Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge by high-temperature sintering process,and then it’s physical properties,leaching toxicity and sintering mechanisms were investigated.The results showed that the preferred conditions for the preparation of ACFM were that the mass ratio of sludge,river sediment and fly ash was 5∶4∶1,preheated at 400℃for 20 min and sintered at 1 150℃for 5 min.After the optimal sintering conditions treatment,the physical properties of the rate of breaking and wear,solubility in hydrochloric acid,silt carrying capacity,void fraction and Brunauer-Emmett-Teller(BET)specific surface area of ACFM were 0.2%,0.01%,0.2%,71.1%and 0.75×104cm2/g,respectively.The results confirmed that the ACFM’s physical properties were totally aligned to the requirements of China’s industry standard(CJ/T 299—2008).The leaching toxicity results indicated that the leaching contents of heavy metals,such as Cr,Zn and Cu,were much lower than the thresholds of China’s national standards(GB 5085.3—2007 and GB 8978—1996).展开更多
α-SiC, Al_2O_3 and Y_2O_3 powders were all used as raw materials. The SiC-Al_2O_3-Y_2O_3 ceramic composites were made by pressureless liquid phase sintering technology. The effects of sintering temperature, loss weig...α-SiC, Al_2O_3 and Y_2O_3 powders were all used as raw materials. The SiC-Al_2O_3-Y_2O_3 ceramic composites were made by pressureless liquid phase sintering technology. The effects of sintering temperature, loss weight and coordination number on sintering densification were studied. The reason for producing loss weight on sintering was analysed. The results show that the primary reason for producing loss weight on sintering in SiC-Al_2O_3-Y_2O_3 ceramic composite was that chemical reactions between SiC and Al_2O_3 are happened during sintering, and given out volatile gases. If sintering temperature is excessively lower, grain size would be finer, and coordination number would be higher, well then material would be on no sintering densification. If sintering temperature is excessively higher, grains would grow up, though small coordination number would benefit to make pore eliminate and shrink, but coarse microstructure would also block gliding and resetting of grains, together affected by expansion stress from volatile gas, the material densification would instead go down. Only under the sintering process of 1850 ℃ for 30 min, material densification is better, and the mechanical property of ceramic composites is also improved.展开更多
Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-...Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-controlled electric furnace.The results show that the optimal sintering system is the sintering temperature range of 1250 ℃ to 1280 ℃ and retaining time of 5 min-10 min.The bulk density,the apparent density and 24 h water absorption of ceramsites decrease with the increase of sintering additive and the decrease of the amount of fly ash.The addition of fluxing additive can significantly enhance the compressive strength of ceramsite pellets,reduce its water absorption at 24 h and improve pore-shape ofinner structure.The firing coefficient (Pk) changed within 7.8-8.1 of raw materials can prepare high strength and low water absorption ceramsites.Pk kept a good linear relationship with porosity and strength of ceramsite particles.展开更多
Grain evolution of boron carbide ceramic powder during isothermal sintering process was in situ investigated by synchrotron radiation X-ray computed tomography (SR-CT) technique. The process of grain growth and materi...Grain evolution of boron carbide ceramic powder during isothermal sintering process was in situ investigated by synchrotron radiation X-ray computed tomography (SR-CT) technique. The process of grain growth and material migration during three sintering stages was clearly distinguished from the 2-D and 3-D reconstructed images. The results show that from room temperature to 1 200 ℃ (0-270 min), grains gradually approach each other and form the sintering neck but grain growth does not start, which is indicated as the initial sintering stage. While the sintering time is between 270-390 min (temperature is 1 200 ℃), material migration between grains starts, while grains and sintering neck grow up, which is defined as the middle sintering stage. As the sintering time exceeds 390 min (temperature is 1 200 ℃), pores become isolated and spheroidized, which shows the final sintering stage. The double logarithm curve of mean grain radius and time logarithm during middle stage of isothermal sintering process is obtained from reconstructed images and the grain growth exponent is 0.364 03, falling in the predicted range of the traditional sintering theory. The experiment results are in accordance with those of the traditional sintering theory and provide effective experimental data for further analysis of the sintering process and the mechanical characteristics of ceramics.展开更多
Fe-6.5wt%Si composite compact was fabricated by spark plasma sintering(SPS).Mec hanical alloying(MA)was used to prepare Fe-Si composite powders.The composite p owders were sintered by SPS at elevsated temperature from...Fe-6.5wt%Si composite compact was fabricated by spark plasma sintering(SPS).Mec hanical alloying(MA)was used to prepare Fe-Si composite powders.The composite p owders were sintered by SPS at elevsated temperature from 500℃ to 700℃.The exp erimental results indicate that the non-equilibrium state of composite Fe-Si i s preserved in the compact.The density of the bulk rises with the increasing tem perature and there is no diffusion of silicon and iron in the interface.展开更多
For initiative application of non-oxides in refractories, it is essential to study thermodynamic properties of non-oxides. The stability and stable order of non-ox- ides under oxidized atmosphere are analyzed firstly ...For initiative application of non-oxides in refractories, it is essential to study thermodynamic properties of non-oxides. The stability and stable order of non-ox- ides under oxidized atmosphere are analyzed firstly and then a new process, “converse reaction sintering”, is proposed. The results of study on oxidation mechanism of silicon and aluminum nitrides indicate that the gaseous suboxides can be produced observably when the oxygen partial pressure is lower than “conversion oxygen partial pressure”. The suboxides can be deposited near the surface of composite to become a compact layer. This causes the material possessing a performance of “self-impedient oxidation”. Metal Si and Al are the better additives for increasing the density and width of compact layer and increasing the ability of anti-oxidation and anti-corrosion. The study on Si3 N4-Al2O3, Si3N4-MgO, Si3 N4-SiC systems is also enumerated as examples in the paper. The experimental results show that the converse reaction sintering is able to make high performance composites and metal Si and Al not only can promote the sintering but also increase the density and width of compact layer.展开更多
基金supported by the National Natural Science Foundation of China(No.50574075)New Century Excellent Talents in University(NCET-05-0873)Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP20060700011 and 04JC22)
文摘Because powders are mostly non-isometric during the sintering process, copper powders were chosen to study the effects of four material transport mechanisms, including surface diffusion, grain-boundary diffusion, volume diffusion, and multi-couplings. These material transport mechanisms were studied with respect to sintering neck growth of a non-isometric biosphere during initial sintering. The evolution of the neck growth in the four transport mechanisms was simulated by Visual C++ as well based on the model of different particles. The results show that the increase of the sintering temperature, both the grain-boundary diffusion and volume diffusion play primary roles in neck growth, while surface diffusion gradually becomes the secondary mechanism. Both the sintered neck and the shrinkage of the two centers increase with increasing temperature by means of the coupling diffusion mechanism. The radius of the sintering neck decreased, and the shrinkage rate of the two centers increased with an increase of the diameter ratio of the two spheres.
基金the National Natural Science Foundation of China (No.51078189)the K.C.Wong Magna Fund in Ningbo University and Zhejiang Province Energy Conservation Innovative Team Project in Building (No.2009R50022)
文摘A pilot study was conducted to produce high performance green ceramsite by using sewage sludge, fly ash and silt. According to the theory of Riley, the proportions of raw materials were chosen to perform the sintering experiments. Thereby, the optimum proportion of sludge, fly ash and silt and sintering parameters were determined. The microstructure of the optimized mixture and the leaching of heavy metal elements were also analyzed. The lab testing results show that sintering parameters have significant impact on the performance of ceramsite. For solid waste ceramsite with high loss of ignition, inadequate pre-burning process lowers the strength and increases the water absorption. Low water absorption can be achieved by the enameled surface and closed pore structure. The high performance green ceramsite has the density grade of 700, water absorption of 6% and compressive strength of 6.6 MPa. The ceramsite is mainly composed of cristobalite and mullite. The leaching of heavy metal elements from the solid waste ceramsite are lower than the limits required by the national standard. This study shows that the utilization of solid waste ceramsite as the light Weight aggregate is feasible and safe.
基金Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130075110006)Education Innovation Project of Shanghai,China(No.12ZZ069)Natural Science Foundation of Shanghai,China(No.11ZR1400400)
文摘Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge by high-temperature sintering process,and then it’s physical properties,leaching toxicity and sintering mechanisms were investigated.The results showed that the preferred conditions for the preparation of ACFM were that the mass ratio of sludge,river sediment and fly ash was 5∶4∶1,preheated at 400℃for 20 min and sintered at 1 150℃for 5 min.After the optimal sintering conditions treatment,the physical properties of the rate of breaking and wear,solubility in hydrochloric acid,silt carrying capacity,void fraction and Brunauer-Emmett-Teller(BET)specific surface area of ACFM were 0.2%,0.01%,0.2%,71.1%and 0.75×104cm2/g,respectively.The results confirmed that the ACFM’s physical properties were totally aligned to the requirements of China’s industry standard(CJ/T 299—2008).The leaching toxicity results indicated that the leaching contents of heavy metals,such as Cr,Zn and Cu,were much lower than the thresholds of China’s national standards(GB 5085.3—2007 and GB 8978—1996).
文摘α-SiC, Al_2O_3 and Y_2O_3 powders were all used as raw materials. The SiC-Al_2O_3-Y_2O_3 ceramic composites were made by pressureless liquid phase sintering technology. The effects of sintering temperature, loss weight and coordination number on sintering densification were studied. The reason for producing loss weight on sintering was analysed. The results show that the primary reason for producing loss weight on sintering in SiC-Al_2O_3-Y_2O_3 ceramic composite was that chemical reactions between SiC and Al_2O_3 are happened during sintering, and given out volatile gases. If sintering temperature is excessively lower, grain size would be finer, and coordination number would be higher, well then material would be on no sintering densification. If sintering temperature is excessively higher, grains would grow up, though small coordination number would benefit to make pore eliminate and shrink, but coarse microstructure would also block gliding and resetting of grains, together affected by expansion stress from volatile gas, the material densification would instead go down. Only under the sintering process of 1850 ℃ for 30 min, material densification is better, and the mechanical property of ceramic composites is also improved.
文摘Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-controlled electric furnace.The results show that the optimal sintering system is the sintering temperature range of 1250 ℃ to 1280 ℃ and retaining time of 5 min-10 min.The bulk density,the apparent density and 24 h water absorption of ceramsites decrease with the increase of sintering additive and the decrease of the amount of fly ash.The addition of fluxing additive can significantly enhance the compressive strength of ceramsite pellets,reduce its water absorption at 24 h and improve pore-shape ofinner structure.The firing coefficient (Pk) changed within 7.8-8.1 of raw materials can prepare high strength and low water absorption ceramsites.Pk kept a good linear relationship with porosity and strength of ceramsite particles.
基金Projects(10732080, 10872190, 10902108) supported by the National Natural Science Foundation of ChinaProject supported by Beijing Synchrotron Radiation Facility Foundation(BSRF) Foundation
文摘Grain evolution of boron carbide ceramic powder during isothermal sintering process was in situ investigated by synchrotron radiation X-ray computed tomography (SR-CT) technique. The process of grain growth and material migration during three sintering stages was clearly distinguished from the 2-D and 3-D reconstructed images. The results show that from room temperature to 1 200 ℃ (0-270 min), grains gradually approach each other and form the sintering neck but grain growth does not start, which is indicated as the initial sintering stage. While the sintering time is between 270-390 min (temperature is 1 200 ℃), material migration between grains starts, while grains and sintering neck grow up, which is defined as the middle sintering stage. As the sintering time exceeds 390 min (temperature is 1 200 ℃), pores become isolated and spheroidized, which shows the final sintering stage. The double logarithm curve of mean grain radius and time logarithm during middle stage of isothermal sintering process is obtained from reconstructed images and the grain growth exponent is 0.364 03, falling in the predicted range of the traditional sintering theory. The experiment results are in accordance with those of the traditional sintering theory and provide effective experimental data for further analysis of the sintering process and the mechanical characteristics of ceramics.
基金Funded by the National Natural Science Foundation of China(No.50232020)and the State"863"H tech.Project(No.2002AA327080)
文摘Fe-6.5wt%Si composite compact was fabricated by spark plasma sintering(SPS).Mec hanical alloying(MA)was used to prepare Fe-Si composite powders.The composite p owders were sintered by SPS at elevsated temperature from 500℃ to 700℃.The exp erimental results indicate that the non-equilibrium state of composite Fe-Si i s preserved in the compact.The density of the bulk rises with the increasing tem perature and there is no diffusion of silicon and iron in the interface.
文摘For initiative application of non-oxides in refractories, it is essential to study thermodynamic properties of non-oxides. The stability and stable order of non-ox- ides under oxidized atmosphere are analyzed firstly and then a new process, “converse reaction sintering”, is proposed. The results of study on oxidation mechanism of silicon and aluminum nitrides indicate that the gaseous suboxides can be produced observably when the oxygen partial pressure is lower than “conversion oxygen partial pressure”. The suboxides can be deposited near the surface of composite to become a compact layer. This causes the material possessing a performance of “self-impedient oxidation”. Metal Si and Al are the better additives for increasing the density and width of compact layer and increasing the ability of anti-oxidation and anti-corrosion. The study on Si3 N4-Al2O3, Si3N4-MgO, Si3 N4-SiC systems is also enumerated as examples in the paper. The experimental results show that the converse reaction sintering is able to make high performance composites and metal Si and Al not only can promote the sintering but also increase the density and width of compact layer.