Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to e...Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.展开更多
This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two class...This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two classes of time-frequency analysis techniques are chosen for this study. One is short-time Fourier Transform (STFT) technique from linear time-frequency analysis and the other is the Wigner-Ville Distribution (WVD) from Quadratic time-frequency analysis technique. Algorithms for both these techniques are developed and implemented on non-stationary signals for spectrum analysis. The results of this study revealed that the WVD and its classes are most suitable for time-frequency analysis.展开更多
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ...The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.展开更多
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t...Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.展开更多
In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introductin...In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introducting of the corresponding algorithms, two typical different non-stationary signals with different nonlinear constraining boundaries are taken to be compared by using the above two methods respectively. The obtained results demonstrate that the apparently similar signals are distinguished effectively in a quantitative way by applying above nonlinear chaotic analyses.展开更多
In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct ti...In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements.展开更多
Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unk...Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.展开更多
The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses re...The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses reconstruction by correlation of random noise propagated in the medium. Since wheel-rail interaction constitutes a source of such noise, correlation technique could be convenient for detection of rail defects using only passive sensors. Experiments have been carried out on a 2 m-long rail sample. Acoustic noise is generated in the sample at several positions. Direct comparison between an active emission-reception response and the estimated noise correlation function has confirmed the validity of the equivalence relation between them. The quality of the reconstruction is shown to be strongly related to the spatial distribution of the noise sources. High sensitivity of the noise-correlation functions to a local defect on the rail is also demonstrated. However, interpretation of the defect signature is more ambiguous than when using classical active responses. Application of a spatiotemporal Fourier transform on data recorded with variable sensor-defect distances has allowed overcoming this ambiguity.展开更多
作为非平稳信号的重要特征,瞬时频率(instantaneous frequency,IF)和瞬时调频率(instantaneous frequency rate,IFR)的准确估计具有重要意义。现有方法在处理存在时频交叠的多分量非平稳信号时易发生关联错误等问题。短时调频傅里叶变...作为非平稳信号的重要特征,瞬时频率(instantaneous frequency,IF)和瞬时调频率(instantaneous frequency rate,IFR)的准确估计具有重要意义。现有方法在处理存在时频交叠的多分量非平稳信号时易发生关联错误等问题。短时调频傅里叶变换通过将信号在时间频率调频率三维空间中进行表征,使不同分量发生交叠的可能性大幅降低,且基于频率调频率的变化规律可实现分量的时序关联。据此,提出一种基于检测跟踪算法的多分量IF-IFR估计方法。首先,针对传统检测算法在噪声环境下精度不足问题,提出了基于改进YOLOX网络的检测方法,实现了信号瞬时频率调频率的估计和瞬时形状特征的提取。然后,提出基于卡尔曼滤波的瞬时估计值和形状特征时序关联方法,以形成稳定连续的多分量IF和IFR估计。通过仿真及实测实验对所提算法进行了验证,在设置的仿真场景中,-5 dB信噪比条件下最优估计误差小于0.8 Hz,证明了所提方法的有效性。展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
文摘Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.
文摘This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two classes of time-frequency analysis techniques are chosen for this study. One is short-time Fourier Transform (STFT) technique from linear time-frequency analysis and the other is the Wigner-Ville Distribution (WVD) from Quadratic time-frequency analysis technique. Algorithms for both these techniques are developed and implemented on non-stationary signals for spectrum analysis. The results of this study revealed that the WVD and its classes are most suitable for time-frequency analysis.
文摘The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.
文摘Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.
基金supported by the National Natural Science Foundation of China NSFC under Grant No.10972192
文摘In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introducting of the corresponding algorithms, two typical different non-stationary signals with different nonlinear constraining boundaries are taken to be compared by using the above two methods respectively. The obtained results demonstrate that the apparently similar signals are distinguished effectively in a quantitative way by applying above nonlinear chaotic analyses.
文摘In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements.
基金supported by Fund of National Science & Technology monumental projects under Grants No. 2012ZX03005012, 2011ZX03005-004-03, 2009ZX03003-007
文摘Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.
文摘The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses reconstruction by correlation of random noise propagated in the medium. Since wheel-rail interaction constitutes a source of such noise, correlation technique could be convenient for detection of rail defects using only passive sensors. Experiments have been carried out on a 2 m-long rail sample. Acoustic noise is generated in the sample at several positions. Direct comparison between an active emission-reception response and the estimated noise correlation function has confirmed the validity of the equivalence relation between them. The quality of the reconstruction is shown to be strongly related to the spatial distribution of the noise sources. High sensitivity of the noise-correlation functions to a local defect on the rail is also demonstrated. However, interpretation of the defect signature is more ambiguous than when using classical active responses. Application of a spatiotemporal Fourier transform on data recorded with variable sensor-defect distances has allowed overcoming this ambiguity.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.