期刊文献+
共找到381篇文章
< 1 2 20 >
每页显示 20 50 100
Feature Extraction Techniques of Non-Stationary Signals for Fault Diagnosis in Machinery Systems 被引量:1
1
作者 Chun-Chieh Wang Yuan Kang 《Journal of Signal and Information Processing》 2012年第1期16-25,共10页
Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to e... Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems. 展开更多
关键词 non-stationary signal Short-Time FOURIER TRANSFORM BACK Propagation NEURAL Network Time Frequency Order Spectrum
下载PDF
Discrete Time-Frequency Signal Analysis and Processing Techniques for Non-Stationary Signals
2
作者 S. Sivakumar D. Nedumaran 《Journal of Applied Mathematics and Physics》 2018年第9期1916-1927,共12页
This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two class... This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two classes of time-frequency analysis techniques are chosen for this study. One is short-time Fourier Transform (STFT) technique from linear time-frequency analysis and the other is the Wigner-Ville Distribution (WVD) from Quadratic time-frequency analysis technique. Algorithms for both these techniques are developed and implemented on non-stationary signals for spectrum analysis. The results of this study revealed that the WVD and its classes are most suitable for time-frequency analysis. 展开更多
关键词 non-stationary signal SHORT TERM FOURIER TRANSFORM WIGNER Ville Distribution Algorithm
下载PDF
Time-Frequency Entropy Analysis of Arc Signal in Non-Stationary Submerged Arc Welding
3
作者 Kuanfang He Siwen Xiao +1 位作者 Jigang Wu Guanbin Wang 《Engineering(科研)》 2011年第2期105-109,共5页
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ... The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach. 展开更多
关键词 non-stationary signal SUBMERGED ARC Welding TIME-FREQUENCY ENTROPY Stability
下载PDF
Non-Stationary Signal Segmentation and Separation from Joint Time-Frequency Plane
4
作者 Abdullah Ali Alshehri 《Journal of Signal and Information Processing》 2012年第3期339-343,共5页
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t... Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments. 展开更多
关键词 signal Segmentation TIME-FREQUENCY Distribution Short-Time FOURIER TRANSFORM non-stationary WIENER MASKING
下载PDF
Analysis of Non-stationary Signals Based on Nonlinear Chaotic Theories
5
作者 HAN Qing-peng 《International Journal of Plant Engineering and Management》 2011年第4期249-254,共6页
In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introductin... In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introducting of the corresponding algorithms, two typical different non-stationary signals with different nonlinear constraining boundaries are taken to be compared by using the above two methods respectively. The obtained results demonstrate that the apparently similar signals are distinguished effectively in a quantitative way by applying above nonlinear chaotic analyses. 展开更多
关键词 non-stationary signals surrogate data method Lyapunov exponents
下载PDF
Extraction of Signals Buried in Noise: Non-Ergodic Processes 被引量:1
6
作者 Nourédine Yahya Bey 《International Journal of Communications, Network and System Sciences》 2010年第12期907-915,共9页
In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct ti... In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements. 展开更多
关键词 BURIED signalS stationary non-Ergodic Processes Spectral Analysis White Noise Colored Noise Correlated Noise Doppler VELOCIMETRY
下载PDF
On-Line Structural Breaks Estimation for Non-stationary Time Series Models
7
作者 成孝刚 李勃 陈启美 《China Communications》 SCIE CSCD 2011年第7期95-104,共10页
Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unk... Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed. 展开更多
关键词 non-stationary signal on-line structural breaks estimation ARMA model BREAKPOINT autocorrelation function DICHOTOMY
下载PDF
Experimental Study of Acoustic Noise Correlation Technique for Passive Monitoring of Rails 被引量:1
8
作者 Laïd Sadoudi Emmanuel Moulin +3 位作者 Jamal Assaad Farouk Benmeddour Michaël Bocquet Yassin El Hillali 《Materials Sciences and Applications》 2016年第12期848-862,共16页
The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses re... The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses reconstruction by correlation of random noise propagated in the medium. Since wheel-rail interaction constitutes a source of such noise, correlation technique could be convenient for detection of rail defects using only passive sensors. Experiments have been carried out on a 2 m-long rail sample. Acoustic noise is generated in the sample at several positions. Direct comparison between an active emission-reception response and the estimated noise correlation function has confirmed the validity of the equivalence relation between them. The quality of the reconstruction is shown to be strongly related to the spatial distribution of the noise sources. High sensitivity of the noise-correlation functions to a local defect on the rail is also demonstrated. However, interpretation of the defect signature is more ambiguous than when using classical active responses. Application of a spatiotemporal Fourier transform on data recorded with variable sensor-defect distances has allowed overcoming this ambiguity. 展开更多
关键词 acoustic Noise Correlation signal Processing Passive Green’s Function Reconstruction non-Destructive Testing (NDT) Structural Health Monitoring (SHM) Rail Monitoring
下载PDF
采用非稳相偏振滤波的DAS-VSP数据P/S波分离方法及其应用
9
作者 王腾飞 程玖兵 +3 位作者 孟涛 曹中林 胡善政 段鹏飞 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第7期2761-2772,共12页
分布式光纤声学传感(DAS)因成本低、易布设以及高密度采样等优势正成为重要的地震观测技术,尤其是越来越多地与垂直地震剖面(VSP)结合,用于主动地震勘探或被动地震监测.DAS传感器通过感知弹性波场产生的轴向应变或应变速率来观测地震波... 分布式光纤声学传感(DAS)因成本低、易布设以及高密度采样等优势正成为重要的地震观测技术,尤其是越来越多地与垂直地震剖面(VSP)结合,用于主动地震勘探或被动地震监测.DAS传感器通过感知弹性波场产生的轴向应变或应变速率来观测地震波场振动.然而,目前单分量DAS-VSP数据未完整地记录地下弹性波场的三维矢量振动信号,因此如何从中分离出P波或S波用于后续地震成像与参数反演是重要且很有挑战的课题.以弹性波传播理论为基础,本文根据P波和S波的频散关系估算接收点处各自的偏振方向,通过随频率和空间位置变化的偏振滤波实现DAS-VSP数据的P/S波分离.理论模型合成数据与东海实际DAS-VSP数据实验结果表明,该方法能有效地将P波和S波信号从单分量DAS-VSP数据中分离出来,可为后续纵横波速度反演、PP与PS波成像提供关键的数据预条件处理. 展开更多
关键词 分布式光纤声学传感(DAS) VSP P/S波分离 偏振投影 非稳相滤波
下载PDF
轴承转子系统快变过程振动响应的高精度频谱分析
10
作者 陈润霖 刘佳鑫 +3 位作者 唐杰 徐帆 张延超 崔亚辉 《机床与液压》 北大核心 2024年第11期219-225,共7页
针对高速轴承转子系统的启停过程,研究平稳和非平稳信号的高精度频谱分析方法,利用比例校正法对平稳信号频谱分析后的频率、幅值、相位进行了校正,建立一种将t时空域非平稳信号转变为t~2时空域平稳信号的方法,并基于平稳信号的比例校正... 针对高速轴承转子系统的启停过程,研究平稳和非平稳信号的高精度频谱分析方法,利用比例校正法对平稳信号频谱分析后的频率、幅值、相位进行了校正,建立一种将t时空域非平稳信号转变为t~2时空域平稳信号的方法,并基于平稳信号的比例校正法对其进行频谱分析,最后返回到t时空域获得某时刻的频域参数。仿真分析结果表明:该方法可以准确提取平稳信号的谱特征,也能较精确地提取非平稳信号特定时刻的频率、幅值和相位,提取结果精度较好,有效解决轴承转子系统快变过程的谱分析特征提取问题,为动力学特性分析提供了新思路。 展开更多
关键词 轴承转子系统 快变过程 非平稳信号 高精度频谱分析 快速傅里叶变换
下载PDF
EMD端点效应问题解决方法的研究 被引量:1
11
作者 张雨萍 张志刚 +1 位作者 周庆华 唐立军 《信息技术》 2024年第1期52-58,64,共8页
经验模态分解(EMD)是近年来兴起的一种非平稳信号处理方法,但在分解过程中因产生端点效应而造成分解结果严重失真。因此,研究了一种自适应波形匹配延拓法的改进方法,该方法根据信号端部不同特点确定延拓点并进行延拓,从而解决端点效应... 经验模态分解(EMD)是近年来兴起的一种非平稳信号处理方法,但在分解过程中因产生端点效应而造成分解结果严重失真。因此,研究了一种自适应波形匹配延拓法的改进方法,该方法根据信号端部不同特点确定延拓点并进行延拓,从而解决端点效应问题。实验结果表明,改进的自适应波形匹配延拓法能避免信号EMD分解失真。将改进的自适应波形匹配延拓法的EMD结合小波软阈值去噪方法用于处理加噪超声仿真信号,得到的信噪比比小波软阈值法处理后的信噪比高33.78%,说明该方法在非线性、非平稳信号处理方面有一定优势。 展开更多
关键词 非平稳信号处理 经验模态分解 端点效应 波形匹配延拓法 超声仿真信号去噪
下载PDF
基于小波奇异特征约束的期望最大时延估计算法
12
作者 朱小婷 张君 +3 位作者 王璐 陈志菲 鲍明 王翊 《兵工学报》 EI CAS CSCD 北大核心 2024年第4期1108-1116,共9页
针对低信噪比条件下非平稳信号时延估计精度低的问题,提出基于小波奇异特征约束的期望最大时延估计算法。设计小波奇异性特征尺度广义互相关矩阵,构建多尺度小波奇异特征约束下的期望最大化模型。推导参数更新公式,利用期望最大化算法... 针对低信噪比条件下非平稳信号时延估计精度低的问题,提出基于小波奇异特征约束的期望最大时延估计算法。设计小波奇异性特征尺度广义互相关矩阵,构建多尺度小波奇异特征约束下的期望最大化模型。推导参数更新公式,利用期望最大化算法并行迭代,求取奇异性特征显著性最大条件下信号的自适应尺度以及该尺度下声源信号的最优时延估计值。仿真和实验结果表明,所提算法在低信噪比条件下,相较于传统广义互相关时延估计算法以及改进算法具有较高的时延估计精度,并且有效提高了误差约束范围内的有效估计成功率。 展开更多
关键词 低信噪比 非平稳信号 小波奇异性 期望最大化 时延估计
下载PDF
加权有向关联网络构建与表征的水中目标远距离检测
13
作者 张红伟 王海燕 +1 位作者 闫永胜 申晓红 《兵工学报》 EI CAS CSCD 北大核心 2024年第8期2584-2593,共10页
水中目标的远距离检测是海洋防御体系的关键技术之一,对国防及民用领域均具有十分重要的作用。然而,目前尚缺乏行之有效的水中目标远距离检测方法,特别是目标先验信息未知的情况下变的愈加困难。为解决这一问题,提出一种新的方法—加权... 水中目标的远距离检测是海洋防御体系的关键技术之一,对国防及民用领域均具有十分重要的作用。然而,目前尚缺乏行之有效的水中目标远距离检测方法,特别是目标先验信息未知的情况下变的愈加困难。为解决这一问题,提出一种新的方法—加权有向关联网络。通过矢量声信号到加权有向关联网络的映射,将信号检测问题转化为网络拓扑的表征,并通过对网络拓扑的特性分析及特征提取,实现无目标先验信息下的水中目标远距离检测。并通过仿真与实测数据对所提出的方法进行验证。研究结果表明:与现有的窄带互谱检测、冒泡熵等方法相比,所提方法能够检测到更低信噪比的水中目标,实现了无需目标先验信息的水中目标远距离检测;该方法的应用具有一定的实际意义和应用前景,可以为海洋防御和民用领域的水下目标检测提供有效的技术支撑。 展开更多
关键词 水中目标 远距离检测 复杂网络 矢量声信号 加权有向关联网络 无目标先验
下载PDF
汽车非平稳车内噪声时变综合烦躁度客观评价方法
14
作者 冯天培 惠延波 +3 位作者 王岩松 马喜岭 张博强 孙朋 《噪声与振动控制》 CSCD 北大核心 2024年第6期198-205,共8页
与汽车非平稳车内噪声时变声品质主观评价序列的平滑性相反,传统客观评价模型输出的预测序列是较为波动的。本文在传统模型建立的基础上,利用Savitzky-Golay滤波器对预测序列进行时域平滑后处理。检验结果表明,相比于预测序列,时序平滑... 与汽车非平稳车内噪声时变声品质主观评价序列的平滑性相反,传统客观评价模型输出的预测序列是较为波动的。本文在传统模型建立的基础上,利用Savitzky-Golay滤波器对预测序列进行时域平滑后处理。检验结果表明,相比于预测序列,时序平滑评价序列对车内噪声时变综合烦躁度的评价性能更高,预测精度(误差均方根值降低11.40%)、稳定性(误差方差降低31.50%)与一致性(Pearson相关系数提高9.95%)均得到较大提高。在传统模型基础上对预测序列进行时域平滑后处理,是具有更高精度的时变综合烦躁度客观评价方法。 展开更多
关键词 声学 非平稳车内噪声 时变声品质评价 客观评价方法 时间序列 Savitzky-Golay平滑滤波器
下载PDF
非高斯噪声中水下目标辐射噪声的分布式检测融合方法
15
作者 乔路 赵金虎 冯西安 《系统工程与电子技术》 EI CSCD 北大核心 2024年第11期3605-3612,共8页
针对非高斯噪声干扰环境中,基于噪声统计信息的分布式传感器检测融合求解困难这一问题,提出一种非高斯噪声中水下目标辐射噪声的分布式检测融合方法。首先,将水声环境中的非高斯噪声建模为Alpha稳定分布模型,而将目标辐射噪声建模为高... 针对非高斯噪声干扰环境中,基于噪声统计信息的分布式传感器检测融合求解困难这一问题,提出一种非高斯噪声中水下目标辐射噪声的分布式检测融合方法。首先,将水声环境中的非高斯噪声建模为Alpha稳定分布模型,而将目标辐射噪声建模为高斯信号。然后,采用高斯函数检测器将非高斯噪声污染的目标辐射噪声转换为高斯噪声中的信号检测模型,得到检测器输出与输入噪声分布的参数关系以及信号分布参数关系。最后,以高斯函数检测器输出抽样样本作为检测统计量,在奈曼-皮尔逊(Neyman-Pearson,N-P)准则下设计分布式传感器检测融合系统的检测门限及检测融合规则,使得各传感器检测结果得到最优融合。计算机仿真结果验证了所提方法的正确性和有效性。 展开更多
关键词 水声传感器 非高斯噪声 高斯信号 分布式检测融合 高斯函数检测器
下载PDF
非平稳强噪声环境中的音频信号端点检测系统
16
作者 郭凯丽 王建英 《现代电子技术》 北大核心 2024年第10期18-22,共5页
为提高音频信号端点识别能力,设计一种非平稳强噪声环境中的音频信号端点检测系统。构建音频信号端点检测硬件单元,利用预处理单元对音频信号进行预加重、分帧以及加窗处理后,端点检测单元在提取处理音频信号的MFCC倒谱距离特征、频带... 为提高音频信号端点识别能力,设计一种非平稳强噪声环境中的音频信号端点检测系统。构建音频信号端点检测硬件单元,利用预处理单元对音频信号进行预加重、分帧以及加窗处理后,端点检测单元在提取处理音频信号的MFCC倒谱距离特征、频带方差特征的基础上,依据动态阈值估计策略确定恰当阈值;通过双特征参数双门限法来实现对音频信号起止点的确定以及语音帧和非语音帧的分离;利用包络确定延时单元,防止噪声段被错误识别为语音段,避免出现拖尾太长问题。实验结果表明,所设计系统可实现非平稳强噪声环境音频信号端点检测,检测误差满足设定要求。 展开更多
关键词 非平稳噪声 强噪声 音频信号 端点检测 MFCC特征 频带方差 动态阈值估计 双门限法
下载PDF
基于检测跟踪算法的多分量瞬时频率调频率估计
17
作者 卢杰 张文鹏 +1 位作者 刘永祥 杨威 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期22-34,共13页
作为非平稳信号的重要特征,瞬时频率(instantaneous frequency,IF)和瞬时调频率(instantaneous frequency rate,IFR)的准确估计具有重要意义。现有方法在处理存在时频交叠的多分量非平稳信号时易发生关联错误等问题。短时调频傅里叶变... 作为非平稳信号的重要特征,瞬时频率(instantaneous frequency,IF)和瞬时调频率(instantaneous frequency rate,IFR)的准确估计具有重要意义。现有方法在处理存在时频交叠的多分量非平稳信号时易发生关联错误等问题。短时调频傅里叶变换通过将信号在时间频率调频率三维空间中进行表征,使不同分量发生交叠的可能性大幅降低,且基于频率调频率的变化规律可实现分量的时序关联。据此,提出一种基于检测跟踪算法的多分量IF-IFR估计方法。首先,针对传统检测算法在噪声环境下精度不足问题,提出了基于改进YOLOX网络的检测方法,实现了信号瞬时频率调频率的估计和瞬时形状特征的提取。然后,提出基于卡尔曼滤波的瞬时估计值和形状特征时序关联方法,以形成稳定连续的多分量IF和IFR估计。通过仿真及实测实验对所提算法进行了验证,在设置的仿真场景中,-5 dB信噪比条件下最优估计误差小于0.8 Hz,证明了所提方法的有效性。 展开更多
关键词 非平稳信号 检测跟踪 瞬时频率 瞬时调频率
下载PDF
Enhanced Fourier Transform Using Wavelet Packet Decomposition
18
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier Transform Wavelet Packet Decomposition Time-Frequency Analysis non-stationary signals
下载PDF
基于MODWPT平方包络峭度谱的轴承声信号故障诊断方法
19
作者 李方烜 《铁道机车车辆》 北大核心 2024年第1期16-23,共8页
针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱... 针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱,快速定位原始非平稳信号当中冲击成分显著的频带范围,最后对目标频带做带通滤波并进行包络解调可得到故障诊断结果。通过实测轴承声信号数据验证,该方法可以有效地对轴承进行故障诊断。 展开更多
关键词 轴承 非平稳信号 最大重叠离散小波包变换 平方包络 峭度谱 故障诊断
下载PDF
4K高清全媒体转播车音频信号非稳态噪声过滤
20
作者 符达辉 《微型电脑应用》 2024年第6期50-52,64,共4页
4K音频信号噪声呈现复杂状态,在冲击响应下会出现非稳状态,对噪声信号进行识别和标记是一个难点。提出4K高清全媒体转播车音频信号非稳态噪声过滤方法。采用幅频响应特征提取方法对非稳态噪声信号的位置尺度参数进行计算,分割音频信号... 4K音频信号噪声呈现复杂状态,在冲击响应下会出现非稳状态,对噪声信号进行识别和标记是一个难点。提出4K高清全媒体转播车音频信号非稳态噪声过滤方法。采用幅频响应特征提取方法对非稳态噪声信号的位置尺度参数进行计算,分割音频信号片段后构建冲击响应函数。在冲击响应函数的支持下,采用粒子滤波完成非稳态噪声特征的提取。根据特征提取结果,对音频信号进行时域内的分段处理。采用维格纳变换分析音频信号解析信号的时频域,构建非稳态噪声的标记函数,完成非稳态噪声的检测。对非稳态噪声进行编码处理后,获得对应的解析信号,完成非稳态噪声的过滤处理。实验结果表明,所提方法能够提高音频信号的信噪比,并且能够在提升非稳态噪声过滤效果的同时,缩短过滤时间,说明所研究的非稳态噪声过滤方法具有较高的现实应用意义。 展开更多
关键词 4K高清 全媒体转播车 音频信号 非稳态噪声过滤 位置尺度参数
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部