To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, T...In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, The optical fiber sensor was placed between two permanent magnets with the N-pole. Therefore, the optical fiber sensing system was built to detect the defective ferromagnetic objects. Theoretical and experimental studies shown that the system can identify a little defects, such as irons’ blind hole (diameter φ =?3mm , depth t = 4mm?), irons’ grooves (length l= 30mm , width?ω = 10mm ), hole (φ?=?3mm ) and crackle etc. The system has the characteristics of small size, high sensitivity, fast signal response and high resolution. In terms of the defective oil and gas pipelines detection, The optical fiber sensing system is used in non-destructive testing, which will be valuable and meaningful.展开更多
An essentially new method for non-destructive testing of elastic electrically conductive rods using non-vortex electromagnetic induction is proved theoretically. An experimental technique for defining a location of a ...An essentially new method for non-destructive testing of elastic electrically conductive rods using non-vortex electromagnetic induction is proved theoretically. An experimental technique for defining a location of a cross crack is offered.展开更多
Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation ...Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation precision of parameters and the test cost should be considered.On the basis of the given degradation model and failure criterion,a multiple-objective optimization model for the design of ADDTs is proposed.Under constrains of the maximum measurement time,the total sample size and the number of stress levels,a comprehensive target function is suggested to reflect both the precision of lifetime estimation and total cost,and the optimal test plan is obtained,which is composed by optimal choices for samples size,measurement frequency,and the number of measurements at each stress level.A real example is illustrated to demonstrate the implementation of the proposed approach.展开更多
The failure behavior of the precast prestressed concrete T girder was investigated by destructive test and finite-element analysis,and the mid-span deflection,girder stiffness and the variation of the cross section st...The failure behavior of the precast prestressed concrete T girder was investigated by destructive test and finite-element analysis,and the mid-span deflection,girder stiffness and the variation of the cross section strain in the loading process were obtained,and the mechanical properties,mechanical behavior,elastic and plastic behavior and ultimate bearing capacity of T girder with large span were revealed.Furthermore,the relationship between the beam stiffness degradation,the neutral axis in cross-section,steel yielding and concrete cracking are investigated and analyzed.A method was proposed to predict the residual bearing capacity of a bridge based on the variation of the position of the cross section strain distribution and the section neutral axis,which provided a theoretical basis for predicting the stiffness detection and carrying capacity assessment of prestressed concrete beam.展开更多
In this study, water permeation through cementitious materials was observed using magnetic resonance imaging (MRI). The influence of cement type on the magnetic resonance signal was studied subsequent to determining t...In this study, water permeation through cementitious materials was observed using magnetic resonance imaging (MRI). The influence of cement type on the magnetic resonance signal was studied subsequent to determining the parameters required for imaging. Consequently, adequate imaging of water permeating through hardened cement paste (HCP) made with white Portland cement was achieved, while water permeation through ordinary Portland cement-based HCP yielded poor signal. HCPs maintained at various levels of relative humidity (RH) were observed, and the signal was detected only from those maintained at an RH of higher than 85%. The water permeation depths in HCP were observed by using MRI, and the measured depths were compared to those measured via a spraying water detector on the split surface of the specimens. As a result, good agreement was confirmed between the two methods. Additionally, MRI was applied to concrete specimens;although it was found that water was not detected when a lightweight aggregate was used, water permeation through concrete with limestone aggregate was detectable via MRI. MRI will help in understanding how water permeation causes and accelerates concrete deteriorations such as rebar corrosion and freezing and thawing.展开更多
Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investig...Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.展开更多
Ground Penetrating Radar(GPR) is an effective Non-Destructive Testing(NDT) technique for highway pavement surveys, which is able to acquire continuous pavement data compared with traditional core drilling method. In t...Ground Penetrating Radar(GPR) is an effective Non-Destructive Testing(NDT) technique for highway pavement surveys, which is able to acquire continuous pavement data compared with traditional core drilling method. In this study, we proposed an accurate and efficient method to estimate the thickness of each pavement layer using an air-coupled GPR system. For this work, the main difficulties are estimating each pavement layer's time delay and dielectric constant. We first give the basic signal model for pavement evaluation, and then present an Intrinsic Mode Functions(IMFs) product detector to determine each pavement layer's time delay. This method is based on Empirical Mode Decomposition(EMD), which is an adaptive signal decomposition procedure and proved to be suitable for suppressing noises in GPR signal. The dielectric constant was determined by metal reflection measurement. The laboratory and highway experiments illustrate that the proposed thickness estimation method yields reasonable result, thus meets the requirements of practical highway pavement survey with massive GPR data.展开更多
Grating-based X-ray imaging can make use of conventional tube sources to provide absorption, refraction and scattering contrast images from a single set of projection images efficiently. In this paper, a fresh cherry ...Grating-based X-ray imaging can make use of conventional tube sources to provide absorption, refraction and scattering contrast images from a single set of projection images efficiently. In this paper, a fresh cherry tomato and a dried umeboshi are imaged by using X-ray Talbot–Lau interferometer. The seed distribution in the scattering image of the cherry tomato, and the wrinkles of epicarp in the refraction image of the umeboshi, are shown distinctly. The refraction and scattering images provide more information on subtle features than the absorption image. Also, the contrast-to-noise ratio values show distinguishing capacity of the three kinds of imaging techniques. The results confirm that grating-based X-ray imaging is of great potential in non-destructive fruit testing.展开更多
As part of an international research project—funded by the European Union—capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highe...As part of an international research project—funded by the European Union—capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highest visual demands, acrylate adhesives and EVA films are tested as possible bonding materials for the glass setup. Especially non-destructive methods (visual analysis, analysis of birefringent properties and computed tomographic data) are applied to evaluate failure patterns as well as the long-term behavior considering climatic influences. The experimental investigations are presented after different loading periods, providing information of failure developments. In addition, detailed information and scientific findings on the application of computed tomographic analyses are presented.展开更多
[Objective]The aim was to improve the quality of the egg in favour of producers and business operators according to the market demand to take scientific feeding and management.[Methods]This paper discussed the researc...[Objective]The aim was to improve the quality of the egg in favour of producers and business operators according to the market demand to take scientific feeding and management.[Methods]This paper discussed the research progress of using machine vision,optical properties,and acoustic resonance technology in the egg quality nondestructive testing. [Results]Egg quality indicators directly affect their edible quality and quality levels. [Conclusion]Egg quality test has practical value and practical significance.展开更多
This paper discusses the experimental results of concurrently measured Electrical and Acoustic Emissions in order to evaluate the mechanical health status of cement mortar beams subjected to three-point bending mechan...This paper discusses the experimental results of concurrently measured Electrical and Acoustic Emissions in order to evaluate the mechanical health status of cement mortar beams subjected to three-point bending mechanical tests. In particular, the Electrical Resistance and the Electrical Current emissions are recorded concurrent with Acoustic Emissions and the experimental results are discussed under the concept of crack initiation and propagation processes. For the first time, the electrodes that are used for conducting the measurements are placed in the bulk of the specimen, near the tensile zone, during its preparation. The damage evolution is examined by monitoring the fractional change of the Electrical Resistance and the variation of the Electrical Current in combination with the Acoustic Emission recordings.展开更多
For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT desig...For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT design on non-rectangle test region, the present method is only focused on non-rectangle test region with simple boundary, and the optimization algorithm is based on experience which can not ensure to obtain the optimal plan. In this paper, considering the linear-extreme value model and the optimization goal to minimize the variance of lifetime estimate under normal stress, the optimal design method of two-stress type-I censored CSALT plan on general non-rectangular test region is proposed. First, two properties of optimal test plans are proved and the relationship of all the optimal test plans is determined analytically. Then, on the basis of the two properties, the optimal problem is simplified and the optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed. Finally, a numerical example is used to illustrate the feasibility and effectiveness of the method, The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries. This research provides the theory and method for two-stress optimal CSALT planning on non-rectangular test regions.展开更多
Acoustic emission test and CT scanning are important techniques in the study of coal crack propagation. A uniaxial compression test was performed on coal samples by integrating CT and acoustic emission. The test compa...Acoustic emission test and CT scanning are important techniques in the study of coal crack propagation. A uniaxial compression test was performed on coal samples by integrating CT and acoustic emission. The test comparison analyzes the acoustic emission load and CT images for an effective observation on the entire process, from crack propagation to the samples' destruction. The box dimension of the coal samples' acoustic emission series and the CT images were obtained through calculations by using the authors' own program. The results show that the fractal dimension of both the acoustic emission energy and CT image increase rapidly, indicating coal and rock mass has entered a dangerous condition. Hence, measures should be taken to unload the pressure of the coal and rock mass. The test results provide intuitive observation data for the coal meso-damage model. The test contributes to in-depth studies of coal or rock crack propagation mechanisms and provides a theoretical basis for rock burst mechanism.展开更多
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.
文摘In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, The optical fiber sensor was placed between two permanent magnets with the N-pole. Therefore, the optical fiber sensing system was built to detect the defective ferromagnetic objects. Theoretical and experimental studies shown that the system can identify a little defects, such as irons’ blind hole (diameter φ =?3mm , depth t = 4mm?), irons’ grooves (length l= 30mm , width?ω = 10mm ), hole (φ?=?3mm ) and crackle etc. The system has the characteristics of small size, high sensitivity, fast signal response and high resolution. In terms of the defective oil and gas pipelines detection, The optical fiber sensing system is used in non-destructive testing, which will be valuable and meaningful.
文摘An essentially new method for non-destructive testing of elastic electrically conductive rods using non-vortex electromagnetic induction is proved theoretically. An experimental technique for defining a location of a cross crack is offered.
文摘Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation precision of parameters and the test cost should be considered.On the basis of the given degradation model and failure criterion,a multiple-objective optimization model for the design of ADDTs is proposed.Under constrains of the maximum measurement time,the total sample size and the number of stress levels,a comprehensive target function is suggested to reflect both the precision of lifetime estimation and total cost,and the optimal test plan is obtained,which is composed by optimal choices for samples size,measurement frequency,and the number of measurements at each stress level.A real example is illustrated to demonstrate the implementation of the proposed approach.
基金the support from the Program for Natural Science Foundation of Zhejiang Province(LY16E080006)National Natural Science Foundation of China(51378240)+1 种基金2015 Jiangsu provincial building energy saving and construction industry science and technology project2016 Jiangsu provincial construction industry modernization base project.
文摘The failure behavior of the precast prestressed concrete T girder was investigated by destructive test and finite-element analysis,and the mid-span deflection,girder stiffness and the variation of the cross section strain in the loading process were obtained,and the mechanical properties,mechanical behavior,elastic and plastic behavior and ultimate bearing capacity of T girder with large span were revealed.Furthermore,the relationship between the beam stiffness degradation,the neutral axis in cross-section,steel yielding and concrete cracking are investigated and analyzed.A method was proposed to predict the residual bearing capacity of a bridge based on the variation of the position of the cross section strain distribution and the section neutral axis,which provided a theoretical basis for predicting the stiffness detection and carrying capacity assessment of prestressed concrete beam.
文摘In this study, water permeation through cementitious materials was observed using magnetic resonance imaging (MRI). The influence of cement type on the magnetic resonance signal was studied subsequent to determining the parameters required for imaging. Consequently, adequate imaging of water permeating through hardened cement paste (HCP) made with white Portland cement was achieved, while water permeation through ordinary Portland cement-based HCP yielded poor signal. HCPs maintained at various levels of relative humidity (RH) were observed, and the signal was detected only from those maintained at an RH of higher than 85%. The water permeation depths in HCP were observed by using MRI, and the measured depths were compared to those measured via a spraying water detector on the split surface of the specimens. As a result, good agreement was confirmed between the two methods. Additionally, MRI was applied to concrete specimens;although it was found that water was not detected when a lightweight aggregate was used, water permeation through concrete with limestone aggregate was detectable via MRI. MRI will help in understanding how water permeation causes and accelerates concrete deteriorations such as rebar corrosion and freezing and thawing.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0701102)the National Nature Science Foundation of China(No.51538003)the Shenzhen Technology Innovation Program (No.JSGG20150330103937411)
文摘Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.
基金Supported by the 863 National High Technology Research and Development Program(No.2012AA121901)
文摘Ground Penetrating Radar(GPR) is an effective Non-Destructive Testing(NDT) technique for highway pavement surveys, which is able to acquire continuous pavement data compared with traditional core drilling method. In this study, we proposed an accurate and efficient method to estimate the thickness of each pavement layer using an air-coupled GPR system. For this work, the main difficulties are estimating each pavement layer's time delay and dielectric constant. We first give the basic signal model for pavement evaluation, and then present an Intrinsic Mode Functions(IMFs) product detector to determine each pavement layer's time delay. This method is based on Empirical Mode Decomposition(EMD), which is an adaptive signal decomposition procedure and proved to be suitable for suppressing noises in GPR signal. The dielectric constant was determined by metal reflection measurement. The laboratory and highway experiments illustrate that the proposed thickness estimation method yields reasonable result, thus meets the requirements of practical highway pavement survey with massive GPR data.
基金supported by Japan-Asia Youth Exchange program in Science administered by the Japan Science and Technology Agencythe National Basic Research Program of China(No.2012CB825801)the National Natural Science Foundation of China(Nos.11505188 and 11179004)
文摘Grating-based X-ray imaging can make use of conventional tube sources to provide absorption, refraction and scattering contrast images from a single set of projection images efficiently. In this paper, a fresh cherry tomato and a dried umeboshi are imaged by using X-ray Talbot–Lau interferometer. The seed distribution in the scattering image of the cherry tomato, and the wrinkles of epicarp in the refraction image of the umeboshi, are shown distinctly. The refraction and scattering images provide more information on subtle features than the absorption image. Also, the contrast-to-noise ratio values show distinguishing capacity of the three kinds of imaging techniques. The results confirm that grating-based X-ray imaging is of great potential in non-destructive fruit testing.
文摘As part of an international research project—funded by the European Union—capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highest visual demands, acrylate adhesives and EVA films are tested as possible bonding materials for the glass setup. Especially non-destructive methods (visual analysis, analysis of birefringent properties and computed tomographic data) are applied to evaluate failure patterns as well as the long-term behavior considering climatic influences. The experimental investigations are presented after different loading periods, providing information of failure developments. In addition, detailed information and scientific findings on the application of computed tomographic analyses are presented.
基金Funded by Natural fund project of Shanxi Normal University(872014)Functional Food Project of Shanxi Normal University(870340)
文摘[Objective]The aim was to improve the quality of the egg in favour of producers and business operators according to the market demand to take scientific feeding and management.[Methods]This paper discussed the research progress of using machine vision,optical properties,and acoustic resonance technology in the egg quality nondestructive testing. [Results]Egg quality indicators directly affect their edible quality and quality levels. [Conclusion]Egg quality test has practical value and practical significance.
文摘This paper discusses the experimental results of concurrently measured Electrical and Acoustic Emissions in order to evaluate the mechanical health status of cement mortar beams subjected to three-point bending mechanical tests. In particular, the Electrical Resistance and the Electrical Current emissions are recorded concurrent with Acoustic Emissions and the experimental results are discussed under the concept of crack initiation and propagation processes. For the first time, the electrodes that are used for conducting the measurements are placed in the bulk of the specimen, near the tensile zone, during its preparation. The damage evolution is examined by monitoring the fractional change of the Electrical Resistance and the variation of the Electrical Current in combination with the Acoustic Emission recordings.
基金supported by National Natural Science Foundation of China(Grant Nos. 50935002, 51075370, 51105341)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA04Z409)+1 种基金the Technology Foundation of National Defense ProgramZhejiang Provincial Natural Science Foundation of China (Grant Nos. Y1100777, Y1080762)
文摘For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT design on non-rectangle test region, the present method is only focused on non-rectangle test region with simple boundary, and the optimization algorithm is based on experience which can not ensure to obtain the optimal plan. In this paper, considering the linear-extreme value model and the optimization goal to minimize the variance of lifetime estimate under normal stress, the optimal design method of two-stress type-I censored CSALT plan on general non-rectangular test region is proposed. First, two properties of optimal test plans are proved and the relationship of all the optimal test plans is determined analytically. Then, on the basis of the two properties, the optimal problem is simplified and the optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed. Finally, a numerical example is used to illustrate the feasibility and effectiveness of the method, The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries. This research provides the theory and method for two-stress optimal CSALT planning on non-rectangular test regions.
文摘Acoustic emission test and CT scanning are important techniques in the study of coal crack propagation. A uniaxial compression test was performed on coal samples by integrating CT and acoustic emission. The test comparison analyzes the acoustic emission load and CT images for an effective observation on the entire process, from crack propagation to the samples' destruction. The box dimension of the coal samples' acoustic emission series and the CT images were obtained through calculations by using the authors' own program. The results show that the fractal dimension of both the acoustic emission energy and CT image increase rapidly, indicating coal and rock mass has entered a dangerous condition. Hence, measures should be taken to unload the pressure of the coal and rock mass. The test results provide intuitive observation data for the coal meso-damage model. The test contributes to in-depth studies of coal or rock crack propagation mechanisms and provides a theoretical basis for rock burst mechanism.