Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that th...Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.展开更多
Based on vectorial Debye theory, tight focusing of radially and azimuthally polarized vortex beams passing through a dielectric interface are studied. The intensity distribution in the focal region is illustrated by n...Based on vectorial Debye theory, tight focusing of radially and azimuthally polarized vortex beams passing through a dielectric interface are studied. The intensity distribution in the focal region is illustrated by numerical calculations. We show the influence of numerical-aperture (NA) on the full-width at half maximum (FWHM) of the focal spot or the focal hole. It has been found that compared with the azimuthally polarized Besse^Gaussian (BG) beams, the longitudinal component in the z direction of the radially polarized BG beams has no influence on the FWHM of the focal spot and hole, but enhances the total light intensity.展开更多
Based on a full vector-diffraction theory, a detailed theoretical study is carried out, aiming at providing a clear insight into the effects of different focusing and off-axis parabola parameters on far-field vector-d...Based on a full vector-diffraction theory, a detailed theoretical study is carried out, aiming at providing a clear insight into the effects of different focusing and off-axis parabola parameters on far-field vector-diffraction properties of an offaxis parabolic mirror in the presence of misalignments of the incoming beam. The physical origin of these effects is also explored. The results show that the far-field intensity profile is altered by the distortion-, coma-, and astigmatism-like aberrations, which are caused by oblique incidence rather than inherent aberrations for the off-axis configuration. The radius of 90% encircled energy also increases but does not change monotonically with incident beam size increasing, or rather,it first decreases and then increases. The focal shift strongly depends on the effective focal length and oblique incidence angle, but it is almost independent of the beam size, which affects the focusing spot patterns. The intensity distribution produces a higher astigmatic image with off-axis angle increasing. Coma-like aberration starts to become dominant with beam size increasing and results in larger curved propagation trajectory. The incident polarization also affects the intensity distribution. The variation in the Strehl ratio with oblique incidence angle strongly depends on the misalignment direction and beam size as well. In addition, we find that the difference in locus between the catacaustic and the diffraction focus in the meridian is small. But the locus of the sagittal foci is obviously different from the locus of the meridian foci and the catacaustic focus. Moreover, the peak intensity of the sagittal focus is maximum, and the ratio of the peak intensity to that in the meridian plane is approximately 1.5. Understanding these effects is valuable for assessing a practical focused intensity and describing the motion of charged particles under a strong electric field in ultraintense laser–matter interaction.展开更多
The matrix eigenvalue method is used to analyze a laser resonator composed of diffraction optical elements. The results show that this type of resonator can separate fundamental mode and high order modes effectively. ...The matrix eigenvalue method is used to analyze a laser resonator composed of diffraction optical elements. The results show that this type of resonator can separate fundamental mode and high order modes effectively. The output beams can be designed for different requests.展开更多
基金supported by the Major State Basic Research Development Program of China (Grant No. 61363)the National Natural Science Foundation of China (Grant Nos. 50772019 and 61021061)
文摘Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.
基金Supported by the National Natural Science Foundation of China under Grant No 60477041, the Key Project of Science and Technology of Fujian Province under Grant No 2007H0027, and the Foundation of Science and Technology Development of Southwest Jiaotong University of China under Grant No 2006B01.
文摘Based on vectorial Debye theory, tight focusing of radially and azimuthally polarized vortex beams passing through a dielectric interface are studied. The intensity distribution in the focal region is illustrated by numerical calculations. We show the influence of numerical-aperture (NA) on the full-width at half maximum (FWHM) of the focal spot or the focal hole. It has been found that compared with the azimuthally polarized Besse^Gaussian (BG) beams, the longitudinal component in the z direction of the radially polarized BG beams has no influence on the FWHM of the focal spot and hole, but enhances the total light intensity.
基金Project supported by the Science Foundation for Youth Scholars of Minjiang University,China(Grant No.Mj9n201602)the National Science and Technology Major Project of the Ministry of Science and Technology of China。
文摘Based on a full vector-diffraction theory, a detailed theoretical study is carried out, aiming at providing a clear insight into the effects of different focusing and off-axis parabola parameters on far-field vector-diffraction properties of an offaxis parabolic mirror in the presence of misalignments of the incoming beam. The physical origin of these effects is also explored. The results show that the far-field intensity profile is altered by the distortion-, coma-, and astigmatism-like aberrations, which are caused by oblique incidence rather than inherent aberrations for the off-axis configuration. The radius of 90% encircled energy also increases but does not change monotonically with incident beam size increasing, or rather,it first decreases and then increases. The focal shift strongly depends on the effective focal length and oblique incidence angle, but it is almost independent of the beam size, which affects the focusing spot patterns. The intensity distribution produces a higher astigmatic image with off-axis angle increasing. Coma-like aberration starts to become dominant with beam size increasing and results in larger curved propagation trajectory. The incident polarization also affects the intensity distribution. The variation in the Strehl ratio with oblique incidence angle strongly depends on the misalignment direction and beam size as well. In addition, we find that the difference in locus between the catacaustic and the diffraction focus in the meridian is small. But the locus of the sagittal foci is obviously different from the locus of the meridian foci and the catacaustic focus. Moreover, the peak intensity of the sagittal focus is maximum, and the ratio of the peak intensity to that in the meridian plane is approximately 1.5. Understanding these effects is valuable for assessing a practical focused intensity and describing the motion of charged particles under a strong electric field in ultraintense laser–matter interaction.
基金This project is supported by the National Natural Science Foundation of China under the Grant No. 19970438.
文摘The matrix eigenvalue method is used to analyze a laser resonator composed of diffraction optical elements. The results show that this type of resonator can separate fundamental mode and high order modes effectively. The output beams can be designed for different requests.