Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the...Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops.展开更多
Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have ...Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have been hampered by the pest leafhopper.Leafhopper alone has been shown to cause yield losses of up to 40%.In this study,screening and evaluation were performed to identify and categorize 100 cotton genotypes along with 5 checks as resistant,moderately resistant,sensitive and highly sensitive to leafhoppers.Results A total of hundred genotypes were evaluated along with five checks for leafhopper resistance.Based on the screening results,a total of 19 genotypes were resistant to leafhoppers,which was on par with the findings of the check KC 3.The contents of total soluble sugar,total soluble protein,and total free amino acids were significantly positively correlated with the mean grade,whereas total phenols content and trichome density were significantly negatively correlated with the susceptibility grade.However,based on screening and biochemical analysis,the genotypes KC 2,JR-23,Samaru-26-T,D 4,TCH 1728,RS 253,and B-61-1862 exhibited high resistance to leafhopper.Conclusion According to the findings of this study,choosing genotypes with high total phenolics content together with high trichome density and low contents of total soluble sugar,total soluble protein,and free amino acids may aid in the development of resistant genotypes.展开更多
The occurrence, distribution, and rapid molecular detection technology of Heterodera zeae Koshy et al. 1971, have been reported in China. We explored the biological characteristics of H. zeae sampled in Henan Province...The occurrence, distribution, and rapid molecular detection technology of Heterodera zeae Koshy et al. 1971, have been reported in China. We explored the biological characteristics of H. zeae sampled in Henan Province, China to understand its interaction with plants. Cysts and second-stage juveniles(J2s) were identified under an optical and scanning electron microscope, internal transcribed spacer(ITS) phylogenetic tree, and sequence characterized amplified region(SCAR)-PCR analyses. The optimum hatching temperatures of H. zeae were 30°C and 28°C, with cumulative hatching rates of 16.5 and 16.1%, respectively, at 30 days post-hatching(dph). The hatching rate of H. zeae eggs was improved by 20-and 50-time maize soil leachate and root juice, and 10-time root exudates. The hatching rate in 10-time root exudates was the highest(25.9%). The 10-time root exudates of maize and millet produced the highest hatching rate at 30 dph(25.9 and 22.9%, respectively), followed by wheat(19.9%), barley(18.3%), and rice(17.6%). Heterodera zeae developed faster in maize than in other crops. Fourth-stage juveniles(J4s) were detected in maize roots 8 days post-inoculation(dpi) at 28°C but not in other crops. Combined with hatching tests, the Huang–Huai–Hai summer maize region and the south and central-southwest mountainous maize areas are highly suitable for H. zeae in China. This is the first systematically study of the hatching and infection characteristics on different plant hosts of corn cyst nematode H. zeae in temperate regions. This study laid a theoretical foundation for the rapid spread and high environmental adaptability of corn cyst nematode.展开更多
This is the first time that biological induced resistance has been used in the research of the bacterial canker on poplar. After inoculated with less-aggressive strains, middle-aggressive strains and non-aggressive st...This is the first time that biological induced resistance has been used in the research of the bacterial canker on poplar. After inoculated with less-aggressive strains, middle-aggressive strains and non-aggressive strains (high-aggressive strains have been treated with 400W ultraviolet lamp for 30 min on super-clean working table) poplar seedlings have been inoculated with high-aggressive strams. the results of those experiments shown that strain 3 (from Suihua, Heilongjiang)and strain 9 (from Liaoning) can significantly enhance the activities of the peroxidase of host. and the efects of twice inoculation were much better than that of once inoculation. 7. 1 % and 4.0% of the peroxidase activities have been enhanced respectively in the seedlings which were twice inoculation with strains 3 and strains 9. 1. 1 % and 1 .2 % of the peroxidase activities have been enhanced by inoculated strains 3 and strains 9 once into seedlings.展开更多
Short term repeated exposure of 1-chloroacetophenone (CN) vapours at a concentration of 0.153 mg per litre for 15 minutes daily on 10 consecuitve days in Swiss albino male mice resulted in increased mortality to Liste...Short term repeated exposure of 1-chloroacetophenone (CN) vapours at a concentration of 0.153 mg per litre for 15 minutes daily on 10 consecuitve days in Swiss albino male mice resulted in increased mortality to Listeria monocytogenes. Significantly elevated bacterial growth was observed in the spleen and liver of the CN exposed animals. The increased bacterial count in these organs was evident within 4-6 days post challenge as compared to vehicle exposed infected and unexposed infected animals. Increased susceptibility to infection has been considered to be the function of immune alteration due to cumulative short term effects ofCN vapour inhalation. This may be attributed to immunotoxic effects of CN on Tcells mediated macrophage functions.展开更多
The wide application of plastics has led to the ubiquitous presence of nanoplastics and microplastics in terrestrial environments.However,few studies have focused on the mechanism underlying the effects of plastic par...The wide application of plastics has led to the ubiquitous presence of nanoplastics and microplastics in terrestrial environments.However,few studies have focused on the mechanism underlying the effects of plastic particles on soil microbiomes and resistomes,especially the differences between nanoplastics and microplastics.This study investigated the microbiome and resistome in soil exposed to polystyrene microplastics(mPS)or nanoplastics(nPS)through 16S rRNA and shotgun metagenomic sequencing.Distinct microbial communities were observed between mPS and nPS exposure groups,and nPS exposure significantly changed the bacterial composition even at the lowest amended rate(0.01%,w/w).The abundance of antibiotic resistance genes(ARGs)in nPS exposure(1%)was 0.26 copies per cell,significantly higher than that in control(0.21 copies per cell)and mPS exposure groups(0.21 copies per cell).It was observed that nanoplastics,bacterial community,and mobile genetic elements(MGEs)directly affected the ARG abundance in nPS exposure groups,while in mPS exposure groups,only MGEs directly induced the change of ARGs.Streptomyces was the predominant host for multidrug in the control and mPS exposure,whereas the primary host was changed to Bacillus in nPS exposure.Additionally,exposure to nPS induced several bacterial hosts to exhibit possible multi-antibiotic resistance characteristics.Our results indicated that the effects of plastic particles on the soil microbial community were size-dependent,and nano-sized plastic particles exhibited more substantial impacts.Both microplastics and nanoplastics promoted ARG transfer and diversified their bacterial hosts.These findings bear implications for the regulation of plastic waste and ARGs.展开更多
The colonization of maize(Zea mays L.) and peanut(Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to econ...The colonization of maize(Zea mays L.) and peanut(Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species(ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A.flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.展开更多
The gut microbiota plays a key role in metabolic diseases.Gut-microbiota-derived metabolites are found in different dietary sources,including:Carbohydrate(acetate,propionate,butyrate,also known as short-chain fatty ac...The gut microbiota plays a key role in metabolic diseases.Gut-microbiota-derived metabolites are found in different dietary sources,including:Carbohydrate(acetate,propionate,butyrate,also known as short-chain fatty acids,as well as succinate);protein(hydrogen sulfide,indole,and phenylacetic acid);and lipids(resveratrol-,ferulic acid-,linoleic acid-,catechin-and berry-derived metabolites).Insulin resistance,which is a global pandemic metabolic disease that progresses to type 2 diabetes mellitus,can be directly targeted by these metabolites.Gutmicrobiota-derived metabolites have broad effects locally and in distinct organs,in particular skeletal muscle,adipose tissue,and liver.These metabolites can modulate glucose metabolism,including the increase in glucose uptake and lipid oxidation in skeletal muscle,and decrease in lipogenesis and gluconeogenesis associated with lipid oxidation in the liver through activation of phosphatidylinositol 3-kinase-serine/threonine-protein kinase B and AMP-activated protein kinase.In adipose tissue,gut-microbiota-derived metabolites stimulate adipogenesis and thermogenesis,inhibit lipolysis,and attenuate inflammation.Importantly,an increase in energy expenditure and fat oxidation occurs in the whole body.Therefore,the therapeutic potential of current pharmacological and non-pharmacological approaches used to treat diabetes mellitus can be tested to target specific metabolites derived from intestinal bacteria,which may ultimately ameliorate the hyperglycemic burden.展开更多
The gene RB is derived from the wild potato species S. bulbocastanum and confers partial resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. In order to investigate whether a single stra...The gene RB is derived from the wild potato species S. bulbocastanum and confers partial resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. In order to investigate whether a single strain of P. infestans can adapt to overcome this partial resistance source, we subjected RB containing leaflets to multiple rounds of infection with P. infestans, with a culture isolated from a lesion used to infect the next leaflet (a passage). A parallel line of passages was done using susceptible leaflets as hosts. At the end of the experiment, P. infestans strains passaged through resistant or susceptible leaflets were compared for infection efficiency and lesion size. Variants of the P. infestans effector family IPI-O, some of which are recognized by the RB protein to elicit resistance, were cloned and sequenced to determine whether variation occurred during selection on the partially resistant host. Our results show that after 20 rounds of selection, no breakdown in RB resistance took place. In fact, the strain that was continually passaged through the partially resistant host produced smaller lesions on susceptible leaflets and had a lower infection frequency than the strain passaged through susceptible cultivar Katahdin. No changes within IPI-O coding regions were detected after selection on the hosts with RB. Our results indicate that individual strains of P. infestans are not capable of rapidly overcoming RB resistance even when it is the only host available.展开更多
A decline in the immunopotential of the host plays acritical factor(s) in the occurrence of infections with methicillin-resistant Staphylococcus aureus (MRSA) or microorganisms by opportunistic infection. In such an i...A decline in the immunopotential of the host plays acritical factor(s) in the occurrence of infections with methicillin-resistant Staphylococcus aureus (MRSA) or microorganisms by opportunistic infection. In such an infection, no way out for therapeutic concept, therefore bi-directional trial was the final choice. So we selected aformula, Dang Gui Liu Huang Tang (dLHT), which could both augmentimmune factorsin host and exert bacteriostatic effect. We sought to break through the epidemic by MRSA especially in elderly patient, by the fundamental and clinical trial by employing minor TCM, characterizing bidirectional ability of the decoction by western methods. Animal Experiment: Mitomycin-C (MMC)-treated mice with or without the infection of MRSA were made. The experimental design was made up to examine the bacteriostatic action as well as the immunopo-tentiating bias of the promising Chinese herbal medicine, dLHT, which was first proved for its immune potentiating activities as well as their sensitivity to antibiotics, but not direct aseptic effect was clear for MRSA. Both basic and clinical data showed that this formula was effective on repelling from the infectious focus after the treatment of MRSA infection. After the administration of dLHT, the number of white blood cells in MMC-treated mice recovered to 80% of the normal level. In addition, the phagocytic activity of macrophages increased to 70% in the dLHT-treated group, while that of the non-treated group was only 20%. The bactericidal activity also recovered to the level close to the normal value by dLHT. The ratio of neutrophils in the dLHT-administered group increased to 2.2% (normal mice, 2.6%), whereas that in the non-terated group was only 0.5%. The bacterial count in the liver of MRSA-challenged mice reached the peak at six hours after the challenge in both dLHT-treated and non-treated mice. However, the number of bacteria in dLHT group was much greater than that in the non-treated group. The bacterial count in the blood showed an increase 12 and 24 hours after the challenge. Even 24 hours after the challenge, a significant number of bacteria existed in the blood of dLHT-administered group, whereas only a small number of bacteria detectable 6 hours after the challenge and the number gradually decreased thereafter in the dLHT-administered group. MRSA-challenged MMC-treated mice were treated by dLHT, vancomycin, or dLHT and vancomycin. All of non-treated mice died 8 days after the MRSA challenge, whereas the survival rates were 60% after dLHT treatment, 40% after vancomycin treatment, and 80% after dLHT and vancomycin treatment. All of MMC-treated mice, to which the phagocytic cells prepared from MMC-treated mice with dLHT administration had adoptively been transferred, survived from MRSA challenge. On the other hand, the survival rate of MMC-treated mice, to which the lymphocytes prepared from the same mice had adoptively been transferred, was 40%. Clinical Trial: All cases with dLHT treatment showed negative culture results for MRSA after the dLHT administration. The culture generally became negative less than 50 days after the initial administration, whereas one control case needed more than 100 days and the other was dead of the infection. One representative case, who was a 78-year-old woman suffering from hypertension, atrial fibrillation, and cerebral bleeding in the right occipital lobe, infected with MRSA during the antibiotic therapy for Streptococcus pneumoniae. The antibiotic therapy was halted and the dLHT administration started. Three weeks later, the culture result became negative. In addition, serum protein and albumin values also returned to the level that they had had before the infection of MRSA.展开更多
The plant cytoskeleton is a highly dynamic and versatile intracellular scaffold composed of microtubules and microfilaments, serving a multiplicity of functions in plant cells. To reveal the relationship between the c...The plant cytoskeleton is a highly dynamic and versatile intracellular scaffold composed of microtubules and microfilaments, serving a multiplicity of functions in plant cells. To reveal the relationship between the cytoskeleton in wheat (Triticum aestivum L.) cv. Suwon 11 attacked by the non-host pathogen Sphaerotheca fuliginea and the initiation of the hypersensitive response, the microtubule inhibitor oryzalin was injected into the wheat leaves immediately prior to inoculation. The incidence of hypersensitive cell death was significantly lower than that in water-treated control. In addition, the occurrence of hypersensitive cell death was also delayed and S. fuliginea was able to penetrate and form haustoria in epidermal tissues of wheat. All the results above indicated that hypersensitive cell death was associated with depolymerisation of microtubules, suggesting that microtubules might play an important role in the expression of non-host resistance of wheat.展开更多
In order to clarify the differential response of Phytophthora sojae to the seed exudates of host soybean and non-host maize and understand the relationship between seed exudates and host selectivity of Phytophthora so...In order to clarify the differential response of Phytophthora sojae to the seed exudates of host soybean and non-host maize and understand the relationship between seed exudates and host selectivity of Phytophthora sojae, non-host maize Suiyu 23 and susceptible host soybean Sloan seed exudates were collected to measure their influence on mycelial growth, formation and germination of oospores, chemotaxis, encystment and germination of zoospores of Phytophthora sojae. The results showed that nonhost maize seed exudates exhibited repellency to zoospores of Phytophthora sojae, it also could significantly inhibited Phytophthora sojae mycelial growth, formation of oospores compared with the control;compared with host soybean, non-host maize seed exudates could significantly inhibited Phytophthora sojae mycelial growth, formation and germination of oospores, germination of cysts, which indicated that the seed exudates was the critical factor to host selectivity of Phytophthora sojae and the maize seed exudates was closely related to its non-host resistance.展开更多
Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD)...Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD) collected from symptomatic tomato fruits in Weifang, Shandong Province of China. ToMMV-SD caused symptoms such as severe mosaic, mottling, and necrosis of tomato leaves, yellow spot and necrotic lesions on tomato fruits. The obtained full genome of ToMMV-SD was 6 399 nucleotides(accession number MW373515) and had the highest identity of 99.5% with that of isolate SC13-051 from the United States of America at the genomic level. The infectious clone of ToMMV-SD was constructed and induced clear mosaic and necrotic symptoms onto Nicotiana benthamiana leaves. Several commercial tomato cultivars, harboring Tm-2~2 resistance gene, and pepper cultivars, containing L resistance gene, were susceptible to ToMMV-SD. Plants of Solanum melongena(eggplant) and Brassica pekinensis(napa cabbage) showed mottling symptoms, while N. tabacum cv. Zhongyan 100 displayed latent infection. ToMMV-SD did not infect plants of N. tabacum cv. Xanthi NN, Brassica rapa ssp. chinensis(bok choy), Raphanus sativus(radish), Vigna unguiculata cv. Yuanzhong 28-2(cowpea), or Tm-2~2 transgenic N. benthamiana. A quintuplex RT-PCR system differentiated ToMMV from tomato mosaic virus, tomato brown rugose fruit virus, tobacco mosaic virus, and tomato spotted wilt virus, with the threshold amount of 0.02 pg. These results highlight the threat posed by ToMMV to tomato and pepper cultivation and offer an efficient detection system for the simultaneous detection of four tobamoviruses and tomato spotted wilt virus infecting tomato plants in the field.展开更多
The emergence and spread of wheat blast caused by fungal pathogen Magnaporthe oryzae pathotype Triticum is a threat to global wheat production.The resistance level and genetic loci for blast resistance in Chinese germ...The emergence and spread of wheat blast caused by fungal pathogen Magnaporthe oryzae pathotype Triticum is a threat to global wheat production.The resistance level and genetic loci for blast resistance in Chinese germplasm remain unknown.A panel of 266 bread wheat accessions from China,CIMMYTMexico and other countries was screened for head blast resistance under 12 field experiments in Bolivia and Bangladesh.Subsequently,a genome-wide association study was performed to understand the genetic basis of wheat blast resistance.The average blast index of all the accessions was 53.7%±12.7%,and 10 accessions including Chinese accessions Yumai 10 and Yu 02321 showed moderate to high levels of blast resistance,accounting for only 3.8%in the panel.Fifty-eight significant SNPs clustered in a 28.9 Mb interval on the 2 AS/2 NS translocation region,explaining phenotypic variation between10.0%and 35.0%.The frequency of the 2 AS/2 NS translocation in the Chinese accessions was as low as4.5%.These results indicated that the 2 NS fragment was the only major locus conferring resistance to wheat blast in this panel,and the resistant and moderately resistant lines identified could be deployed in breeding.展开更多
基金supported by a grant from Chinese Agriculture Research System of MOF and MARA (Grant No.CARS-24-C-04)Zhejiang Provincial Natural Science Foundation (Grant No.LZ24C140001)+1 种基金National Natural Science Foundation of China (Grant Nos.32370144,32070165)the K.C.Wong Magna Fund in Ningbo University。
文摘Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops.
文摘Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have been hampered by the pest leafhopper.Leafhopper alone has been shown to cause yield losses of up to 40%.In this study,screening and evaluation were performed to identify and categorize 100 cotton genotypes along with 5 checks as resistant,moderately resistant,sensitive and highly sensitive to leafhoppers.Results A total of hundred genotypes were evaluated along with five checks for leafhopper resistance.Based on the screening results,a total of 19 genotypes were resistant to leafhoppers,which was on par with the findings of the check KC 3.The contents of total soluble sugar,total soluble protein,and total free amino acids were significantly positively correlated with the mean grade,whereas total phenols content and trichome density were significantly negatively correlated with the susceptibility grade.However,based on screening and biochemical analysis,the genotypes KC 2,JR-23,Samaru-26-T,D 4,TCH 1728,RS 253,and B-61-1862 exhibited high resistance to leafhopper.Conclusion According to the findings of this study,choosing genotypes with high total phenolics content together with high trichome density and low contents of total soluble sugar,total soluble protein,and free amino acids may aid in the development of resistant genotypes.
基金This study was financially supported by the National Natural Science Foundation of China(31801717)the Major Science and Technology Projects in Henan Province,China(221100110300)+2 种基金the Special Fund for Young Talents in Henan Agricultural University,China(30500663)the Opening Foundation of the National Key Laboratory of Crop Science on Wheat and Maize,China(SKL2021KF06)the HAU grant for Collaborative Crop Science Research,China(CCSR2022-1)。
文摘The occurrence, distribution, and rapid molecular detection technology of Heterodera zeae Koshy et al. 1971, have been reported in China. We explored the biological characteristics of H. zeae sampled in Henan Province, China to understand its interaction with plants. Cysts and second-stage juveniles(J2s) were identified under an optical and scanning electron microscope, internal transcribed spacer(ITS) phylogenetic tree, and sequence characterized amplified region(SCAR)-PCR analyses. The optimum hatching temperatures of H. zeae were 30°C and 28°C, with cumulative hatching rates of 16.5 and 16.1%, respectively, at 30 days post-hatching(dph). The hatching rate of H. zeae eggs was improved by 20-and 50-time maize soil leachate and root juice, and 10-time root exudates. The hatching rate in 10-time root exudates was the highest(25.9%). The 10-time root exudates of maize and millet produced the highest hatching rate at 30 dph(25.9 and 22.9%, respectively), followed by wheat(19.9%), barley(18.3%), and rice(17.6%). Heterodera zeae developed faster in maize than in other crops. Fourth-stage juveniles(J4s) were detected in maize roots 8 days post-inoculation(dpi) at 28°C but not in other crops. Combined with hatching tests, the Huang–Huai–Hai summer maize region and the south and central-southwest mountainous maize areas are highly suitable for H. zeae in China. This is the first systematically study of the hatching and infection characteristics on different plant hosts of corn cyst nematode H. zeae in temperate regions. This study laid a theoretical foundation for the rapid spread and high environmental adaptability of corn cyst nematode.
文摘This is the first time that biological induced resistance has been used in the research of the bacterial canker on poplar. After inoculated with less-aggressive strains, middle-aggressive strains and non-aggressive strains (high-aggressive strains have been treated with 400W ultraviolet lamp for 30 min on super-clean working table) poplar seedlings have been inoculated with high-aggressive strams. the results of those experiments shown that strain 3 (from Suihua, Heilongjiang)and strain 9 (from Liaoning) can significantly enhance the activities of the peroxidase of host. and the efects of twice inoculation were much better than that of once inoculation. 7. 1 % and 4.0% of the peroxidase activities have been enhanced respectively in the seedlings which were twice inoculation with strains 3 and strains 9. 1. 1 % and 1 .2 % of the peroxidase activities have been enhanced by inoculated strains 3 and strains 9 once into seedlings.
文摘Short term repeated exposure of 1-chloroacetophenone (CN) vapours at a concentration of 0.153 mg per litre for 15 minutes daily on 10 consecuitve days in Swiss albino male mice resulted in increased mortality to Listeria monocytogenes. Significantly elevated bacterial growth was observed in the spleen and liver of the CN exposed animals. The increased bacterial count in these organs was evident within 4-6 days post challenge as compared to vehicle exposed infected and unexposed infected animals. Increased susceptibility to infection has been considered to be the function of immune alteration due to cumulative short term effects ofCN vapour inhalation. This may be attributed to immunotoxic effects of CN on Tcells mediated macrophage functions.
基金supported by the Beijing Innovation Consortium of Agriculture Research System(No.BAIC01–2023).
文摘The wide application of plastics has led to the ubiquitous presence of nanoplastics and microplastics in terrestrial environments.However,few studies have focused on the mechanism underlying the effects of plastic particles on soil microbiomes and resistomes,especially the differences between nanoplastics and microplastics.This study investigated the microbiome and resistome in soil exposed to polystyrene microplastics(mPS)or nanoplastics(nPS)through 16S rRNA and shotgun metagenomic sequencing.Distinct microbial communities were observed between mPS and nPS exposure groups,and nPS exposure significantly changed the bacterial composition even at the lowest amended rate(0.01%,w/w).The abundance of antibiotic resistance genes(ARGs)in nPS exposure(1%)was 0.26 copies per cell,significantly higher than that in control(0.21 copies per cell)and mPS exposure groups(0.21 copies per cell).It was observed that nanoplastics,bacterial community,and mobile genetic elements(MGEs)directly affected the ARG abundance in nPS exposure groups,while in mPS exposure groups,only MGEs directly induced the change of ARGs.Streptomyces was the predominant host for multidrug in the control and mPS exposure,whereas the primary host was changed to Bacillus in nPS exposure.Additionally,exposure to nPS induced several bacterial hosts to exhibit possible multi-antibiotic resistance characteristics.Our results indicated that the effects of plastic particles on the soil microbial community were size-dependent,and nano-sized plastic particles exhibited more substantial impacts.Both microplastics and nanoplastics promoted ARG transfer and diversified their bacterial hosts.These findings bear implications for the regulation of plastic waste and ARGs.
基金supported by the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS)the Georgia Agricultural Commodity Commission for Corn, the Georgia Peanut CommissionPeanut Foundation and AMCOE (Aflatoxin Mitigation Center of Excellence)
文摘The colonization of maize(Zea mays L.) and peanut(Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species(ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A.flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.
基金Supported by São Paulo Research Foundation,No.2013/19560-6 and No.2017/23195-2EFSD(European Foundation for the Study of Diabetes)/Sanofi(to RangelÉB).
文摘The gut microbiota plays a key role in metabolic diseases.Gut-microbiota-derived metabolites are found in different dietary sources,including:Carbohydrate(acetate,propionate,butyrate,also known as short-chain fatty acids,as well as succinate);protein(hydrogen sulfide,indole,and phenylacetic acid);and lipids(resveratrol-,ferulic acid-,linoleic acid-,catechin-and berry-derived metabolites).Insulin resistance,which is a global pandemic metabolic disease that progresses to type 2 diabetes mellitus,can be directly targeted by these metabolites.Gutmicrobiota-derived metabolites have broad effects locally and in distinct organs,in particular skeletal muscle,adipose tissue,and liver.These metabolites can modulate glucose metabolism,including the increase in glucose uptake and lipid oxidation in skeletal muscle,and decrease in lipogenesis and gluconeogenesis associated with lipid oxidation in the liver through activation of phosphatidylinositol 3-kinase-serine/threonine-protein kinase B and AMP-activated protein kinase.In adipose tissue,gut-microbiota-derived metabolites stimulate adipogenesis and thermogenesis,inhibit lipolysis,and attenuate inflammation.Importantly,an increase in energy expenditure and fat oxidation occurs in the whole body.Therefore,the therapeutic potential of current pharmacological and non-pharmacological approaches used to treat diabetes mellitus can be tested to target specific metabolites derived from intestinal bacteria,which may ultimately ameliorate the hyperglycemic burden.
文摘The gene RB is derived from the wild potato species S. bulbocastanum and confers partial resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. In order to investigate whether a single strain of P. infestans can adapt to overcome this partial resistance source, we subjected RB containing leaflets to multiple rounds of infection with P. infestans, with a culture isolated from a lesion used to infect the next leaflet (a passage). A parallel line of passages was done using susceptible leaflets as hosts. At the end of the experiment, P. infestans strains passaged through resistant or susceptible leaflets were compared for infection efficiency and lesion size. Variants of the P. infestans effector family IPI-O, some of which are recognized by the RB protein to elicit resistance, were cloned and sequenced to determine whether variation occurred during selection on the partially resistant host. Our results show that after 20 rounds of selection, no breakdown in RB resistance took place. In fact, the strain that was continually passaged through the partially resistant host produced smaller lesions on susceptible leaflets and had a lower infection frequency than the strain passaged through susceptible cultivar Katahdin. No changes within IPI-O coding regions were detected after selection on the hosts with RB. Our results indicate that individual strains of P. infestans are not capable of rapidly overcoming RB resistance even when it is the only host available.
文摘A decline in the immunopotential of the host plays acritical factor(s) in the occurrence of infections with methicillin-resistant Staphylococcus aureus (MRSA) or microorganisms by opportunistic infection. In such an infection, no way out for therapeutic concept, therefore bi-directional trial was the final choice. So we selected aformula, Dang Gui Liu Huang Tang (dLHT), which could both augmentimmune factorsin host and exert bacteriostatic effect. We sought to break through the epidemic by MRSA especially in elderly patient, by the fundamental and clinical trial by employing minor TCM, characterizing bidirectional ability of the decoction by western methods. Animal Experiment: Mitomycin-C (MMC)-treated mice with or without the infection of MRSA were made. The experimental design was made up to examine the bacteriostatic action as well as the immunopo-tentiating bias of the promising Chinese herbal medicine, dLHT, which was first proved for its immune potentiating activities as well as their sensitivity to antibiotics, but not direct aseptic effect was clear for MRSA. Both basic and clinical data showed that this formula was effective on repelling from the infectious focus after the treatment of MRSA infection. After the administration of dLHT, the number of white blood cells in MMC-treated mice recovered to 80% of the normal level. In addition, the phagocytic activity of macrophages increased to 70% in the dLHT-treated group, while that of the non-treated group was only 20%. The bactericidal activity also recovered to the level close to the normal value by dLHT. The ratio of neutrophils in the dLHT-administered group increased to 2.2% (normal mice, 2.6%), whereas that in the non-terated group was only 0.5%. The bacterial count in the liver of MRSA-challenged mice reached the peak at six hours after the challenge in both dLHT-treated and non-treated mice. However, the number of bacteria in dLHT group was much greater than that in the non-treated group. The bacterial count in the blood showed an increase 12 and 24 hours after the challenge. Even 24 hours after the challenge, a significant number of bacteria existed in the blood of dLHT-administered group, whereas only a small number of bacteria detectable 6 hours after the challenge and the number gradually decreased thereafter in the dLHT-administered group. MRSA-challenged MMC-treated mice were treated by dLHT, vancomycin, or dLHT and vancomycin. All of non-treated mice died 8 days after the MRSA challenge, whereas the survival rates were 60% after dLHT treatment, 40% after vancomycin treatment, and 80% after dLHT and vancomycin treatment. All of MMC-treated mice, to which the phagocytic cells prepared from MMC-treated mice with dLHT administration had adoptively been transferred, survived from MRSA challenge. On the other hand, the survival rate of MMC-treated mice, to which the lymphocytes prepared from the same mice had adoptively been transferred, was 40%. Clinical Trial: All cases with dLHT treatment showed negative culture results for MRSA after the dLHT administration. The culture generally became negative less than 50 days after the initial administration, whereas one control case needed more than 100 days and the other was dead of the infection. One representative case, who was a 78-year-old woman suffering from hypertension, atrial fibrillation, and cerebral bleeding in the right occipital lobe, infected with MRSA during the antibiotic therapy for Streptococcus pneumoniae. The antibiotic therapy was halted and the dLHT administration started. Three weeks later, the culture result became negative. In addition, serum protein and albumin values also returned to the level that they had had before the infection of MRSA.
基金financially supported by the National Natural Science Foundation of China (30771398)the 111 Project from Ministry of Education of China(B07049)
文摘The plant cytoskeleton is a highly dynamic and versatile intracellular scaffold composed of microtubules and microfilaments, serving a multiplicity of functions in plant cells. To reveal the relationship between the cytoskeleton in wheat (Triticum aestivum L.) cv. Suwon 11 attacked by the non-host pathogen Sphaerotheca fuliginea and the initiation of the hypersensitive response, the microtubule inhibitor oryzalin was injected into the wheat leaves immediately prior to inoculation. The incidence of hypersensitive cell death was significantly lower than that in water-treated control. In addition, the occurrence of hypersensitive cell death was also delayed and S. fuliginea was able to penetrate and form haustoria in epidermal tissues of wheat. All the results above indicated that hypersensitive cell death was associated with depolymerisation of microtubules, suggesting that microtubules might play an important role in the expression of non-host resistance of wheat.
基金Supported by the National Natural Science Foundation of China(31670444 31370449)
文摘In order to clarify the differential response of Phytophthora sojae to the seed exudates of host soybean and non-host maize and understand the relationship between seed exudates and host selectivity of Phytophthora sojae, non-host maize Suiyu 23 and susceptible host soybean Sloan seed exudates were collected to measure their influence on mycelial growth, formation and germination of oospores, chemotaxis, encystment and germination of zoospores of Phytophthora sojae. The results showed that nonhost maize seed exudates exhibited repellency to zoospores of Phytophthora sojae, it also could significantly inhibited Phytophthora sojae mycelial growth, formation of oospores compared with the control;compared with host soybean, non-host maize seed exudates could significantly inhibited Phytophthora sojae mycelial growth, formation and germination of oospores, germination of cysts, which indicated that the seed exudates was the critical factor to host selectivity of Phytophthora sojae and the maize seed exudates was closely related to its non-host resistance.
基金supported by the grants from the National Natural Science Foundation of China(32072387)the‘Taishan Scholar’Construction Project,China(TS201712023)。
文摘Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD) collected from symptomatic tomato fruits in Weifang, Shandong Province of China. ToMMV-SD caused symptoms such as severe mosaic, mottling, and necrosis of tomato leaves, yellow spot and necrotic lesions on tomato fruits. The obtained full genome of ToMMV-SD was 6 399 nucleotides(accession number MW373515) and had the highest identity of 99.5% with that of isolate SC13-051 from the United States of America at the genomic level. The infectious clone of ToMMV-SD was constructed and induced clear mosaic and necrotic symptoms onto Nicotiana benthamiana leaves. Several commercial tomato cultivars, harboring Tm-2~2 resistance gene, and pepper cultivars, containing L resistance gene, were susceptible to ToMMV-SD. Plants of Solanum melongena(eggplant) and Brassica pekinensis(napa cabbage) showed mottling symptoms, while N. tabacum cv. Zhongyan 100 displayed latent infection. ToMMV-SD did not infect plants of N. tabacum cv. Xanthi NN, Brassica rapa ssp. chinensis(bok choy), Raphanus sativus(radish), Vigna unguiculata cv. Yuanzhong 28-2(cowpea), or Tm-2~2 transgenic N. benthamiana. A quintuplex RT-PCR system differentiated ToMMV from tomato mosaic virus, tomato brown rugose fruit virus, tobacco mosaic virus, and tomato spotted wilt virus, with the threshold amount of 0.02 pg. These results highlight the threat posed by ToMMV to tomato and pepper cultivation and offer an efficient detection system for the simultaneous detection of four tobamoviruses and tomato spotted wilt virus infecting tomato plants in the field.
基金financial support through the CGIAR Research Program on WHEATthe National Natural Science Foundation of China(31561143004)。
文摘The emergence and spread of wheat blast caused by fungal pathogen Magnaporthe oryzae pathotype Triticum is a threat to global wheat production.The resistance level and genetic loci for blast resistance in Chinese germplasm remain unknown.A panel of 266 bread wheat accessions from China,CIMMYTMexico and other countries was screened for head blast resistance under 12 field experiments in Bolivia and Bangladesh.Subsequently,a genome-wide association study was performed to understand the genetic basis of wheat blast resistance.The average blast index of all the accessions was 53.7%±12.7%,and 10 accessions including Chinese accessions Yumai 10 and Yu 02321 showed moderate to high levels of blast resistance,accounting for only 3.8%in the panel.Fifty-eight significant SNPs clustered in a 28.9 Mb interval on the 2 AS/2 NS translocation region,explaining phenotypic variation between10.0%and 35.0%.The frequency of the 2 AS/2 NS translocation in the Chinese accessions was as low as4.5%.These results indicated that the 2 NS fragment was the only major locus conferring resistance to wheat blast in this panel,and the resistant and moderately resistant lines identified could be deployed in breeding.